T475 HST

HST TRACTOR

T475HST

WORKSHOP MANUAL

Chapter 1. Introduction	01
Chapter 2. Disassembly and reassembly of major point	02
Chapter 3. Engine accessories	03
Chapter 4. HST system	04
Chapter 5. Transmission	05
Chapter 6. Front axle (4WD)	06
Chapter 7. Rear axle and Brakes	07
Chapter 8. Power steering system	08
Chapter 9. Hydraulic system	09
Chapter 10. Electric accessories and instruments	10
Chapter 11. Cabin	11

Chapter 1 Introduction

INTRODUCTION	1-1
SAFETY INTRODUCTION	1-2
WARNING SIGNS IN THIS MANUAL	1-4
SAFETY SIGNS	1-5
SAFETY DECALS	1-10
UNIVERSAL SYMBOLS	1-14
SECTION 1. TRACTOR TYPES AND PUNCHED	
IDENTIFICATION MARKS	1-15
SECTION 2. SPECIFICATIONS	1-17
SECTION 3. GEAR TRAIN DIAGRAMS	1-19
SECTION 4. PRECAUTIONS FOR TRACTOR OPERATIONS	1-20
1. INSTRUMENTS	1-20
2. CONTROLS	1-21
3. FILLING DIAGRAM AND CAPACITY TABLE	1-22
4. MAINTENANCE CHART	1-23

Chapter 1 .Introduction

This tractor Workshop manual is for qualified service personnel engaged in servicing and overhauling T475HST tractor. Use of this publication is not recommended for field operators since they usually do not have access to special tools and shop equipment essential for most servicing.

Servicing procedures outlined herein contain sufficient information to return all component parts of a tractor to new condition. In discussion of each component parts, it is assumed that a complete overhaul is been performed, consequently,

complete disassembly and reassembly are outlined. The mechanic is relied upon to decide how far disassembly must be carried when complete overhaul is not required.

Study unfamiliar service procedures thoroughly and clearly understood before attempting disassembly. Specific data essential for proper overhaul, such as running clearances and torque values, have been provided in interline of Inspection and reassembly procedures of each group section.

This manual was compiled from latest information available at time of publication. Manufacturer reserves the right to make changes at any time without notice.

Whenever the terms "left" and "right" are used, They means as viewed by the operator when seated in the operator's seat.

SAFETY INSTRUCTION

ALWAYS PRACTICE SAFETY BY THINKING BEFORE ACTION

AVOID FIRE HAZARDS.

- -Keep fire extinguishers easily available and in good operating condition.
- All relevant personnel should know how to operate fire fighting equipment.
- -Keep a first aid kit in an easily accessible location.
- -Do not smoke while handling fuel, or other highly flammable material.
- -Do not use an open pail for transporting fuel.
- -Use of an approved fuel container.
- -Dispose of all fuel-soaked rags in covered containers where cigarettes cannot be dropped carelessly.
- -Do not smoke and avoid open flame when charging, jumping, or boosting batteries.
- -Batteries give off gas which is flammable and explosive.
- -Do not charge batteries in a closed area. Provide proper ventilation to avoid explosion of accumulated gases.

Avoid acid burns.

-Wear safety goggles when handling battery electrolyte. It contains sulfuric acid which is a poison and can cause blindness. Avoid it contacting eyes, skin, or clothing. sulfuric acid will eat through clothing and can cause severe burns to skin.

AVOID HIGH-PRESSURE FLUIDS

- 1) Before beginning work on hydraulic system components, turn off engine and operate hydraulic control levers to relieve internal hydraulic pressure.
- 2) Oil under pressure can penetrate skin and lead to personal injury. Treat sources of oil pressure with extreme care, wearing safety goggles.
- 3) If hydraulic leak develops, correct immediately. Escaping hydraulic oil can have extremely high pressure. A stream of high pressure oil may easily penetrate skin just like modern needless vaccination equipment, but with the exception that hydraulic fluid may cause blood poisoning. It is imperative that connections are tight and that all lines and pipes should be in good condition. If injured by escaping hydraulic fluid, see a doctor at once.

STAY CLEAR OF PTO

- 1) Entanglement in rotating drive line can cause serious injury or death.
- 2) Keep tractor master shield and drive line shield in place at all times except for special applications as directed in the implement operator's manual.
- 3) Wear fairly tight tight fitting clothing. Stop the engine and be sure PTO driveline is stopped before making adjustment, connections, or cleaning out PTO drive equipment.

SERVICE TIRES SAFELY

- -Tire changing can be dangerous and should be done by trained personnel using proper tools and equipment.
- -Do not re-inflate a tire that has been run flat or seriously under-inflated. Have it checked by qualified personnel.
- -Use wheel handling equipment adequate for weight involved when removing and installing wheels.

WARNING SIGNS IN THIS MANUAL

The following warning symbols in this manual draw additional attention to items of importance for the safe and correct operation of the tractor.

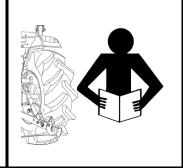
Serious hazard with a very high level of risl either serious injury or death Hazard or unsafe practice that can lead to injury or death. WARNING Hazard or unsafe practice that can lead in it or death.	MEANING O	SIGN
injury or death. WARNING Hazard or unsafe practice that can lead in i or death.	either serious injury or deat	_
or death.	injury or death.	at can lead to severe
CAUTION	or death.	nt can lead in injury
Instructions for the correct operation of the machine which, if followed, will ensure that performs at it's best IMPORTANT	machine which, if followed, performs at it's best	

RECOGNIZE SAFETY INFORMATION

This symbol, Safety-Alert Symbol, means ATTENTION! YOUR SAFETY IS INVOLVED.

The message that follows the symbol contains important information about safety. Carefully read the message

SIGNAL WORDS.


A signal word—DANGER, WARNING OR CAUTION—is used with safety alert symbol. DANGER identifies the most serious hazards. Safety signs with signal Word—DANGER OR WARNING—are typically near specific hazards. General precautions are listed on CAUTION safety signs.

READ SAFETY INSTRUCTION

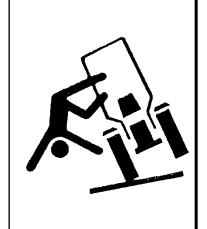
Carefully read all safety instructions given in this manual for your safety. Tempering with any of the safety devices can cause serious injuries or death. Keep all safety signs in good condition. Replace missing or damaged safety signs.

Keep your tractor in proper condition and do not allow any unauthorized modifications to be carried out on the Tractor, which may impair the function/safety and affect Tractor life.

PROTECTION CHILDREN

Keep children and others away from the Tractor while operating. BEFORE YOU REVERSE

- Look behind Tractor for children.
- Do not let children to ride on Tractor or any implement.

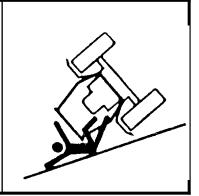


USE OF ROPS AND SEAT BELT

The Roll over Protection Structure (ROPS) has been certified to industry and/or government standards. Any damage or alternation to the ROPS, mounting hardware, or seat belt voids the certification and will reduce or eliminate protection for the operator in the event of a roll-over. The ROPS, mounting hardware, and seat belt should be checked every service for any evidence of damage, wear or cracks. In the event of damage or alteration, the ROPS must be replaced prior to further operation of the Tractor.

The seat belt must be worn during machine operation when the machine is equipped with a certified ROPS.

Failure to do so will reduce or eliminate protection for the operator in the event of a roll-over.

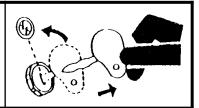

PRECAUTION TO AVOID TIPPING

Do not drive where the Tractor could slip or tip.

Stay alert for holes and rocks in the terrain, and other hidden hazards.

Slow down before you make a sharp turn.

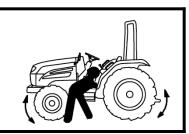
Driving forward out of a ditch or mired condition could cause Tractor to tip over backward. Back out of these situations if possible



PARK TRACTOR SAFELY

Before working on the Tractor;

Lower all equipment to the ground.


Stop the engine and remove the key

KEEP RIDERS OFF TRACTOR

Do not allow riders on the Tractor.

Riders on Tractor are subject to injury such as being stuck by foreign objects and being thrown off of the Tractor

HANDLE FUEL SAFELY-AVOID FIRES

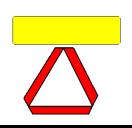
Handle fuel with care; it is highly flammable. Do not refuel the Tractor while smoking or near open flame or sparks.

Always stop engine before refueling Tractors.

Always keep your tractor clean of accumulated grease, and debris. Always clean up spilled fuel.

STAY CLEAR OF ROTATING SHAFTS

Entanglement in rotating shaft can cause serious injury or death. Keep PTO shield in place at all times.


Wear close fitting clothing. Stop the engine and be sure PTO drive is stopped before making adjustments, connections, or cleaning out PTO driven equipment.

ALWAYS USE SAFETY LIGHTS AND DEVICES

Use of hazard warning lights and turn signals are recommended when towing equipment on public roads unless prohibited by state or local regulations.

Use slow moving vehicle (SMV) sign when driving on public road during both day & night time, unless prohibited by law

PRACTICE SAFE MAINTENANCE

Understand service procedure before doing work.

Keep the surrounding area of the Tractor clean and dry.

Do not attempt to service Tractor when it is in motion.

Keep body and clothing away from rotating shafts.

Always lower equipment to the ground. Stop the engine.

Remove the key. Allow Tractor to cool before any work repair is caused on it.

Securely support any Tractor elements that must be raised for service work.

Keep all parts in good condition and properly installed.

Replace worn or broken parts. Replace damage/missing decals.

Remove any buildup of grease or oil from the Tractor.

Disconnect battery ground cable(–) before making adjustments on electrical systems or welding on Tractor

AVOID HIGH-PRESSURE FLUIDS

Escaping fluid under pressure can penetrate the skin causing serious injury. Keep hands and body away from pinholes and nozzles, which eject fluids under high pressure. If ANY fluid is injected into the skin. Consult your doctor immediately.

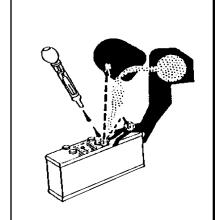
PREVENT BATTERY EXPLOSIONS

Keep sparks, lighted matches, and open flame away from the top of the battery. Battery gas can explode.

Never check battery charge level by placing a metal object across the poles.

PREVENT ACID BURNS

Sulfuric acid in battery electrolyte is poisonous. It is strong enough to burn skin, cause holes in clothing and cause blindness if found entry into eyes.


For adequate safety always;

- 1. Fill batteries in a well-ventilated area.
- 2. Wear eye protection and acid proof hand gloves
- 3. Avoid breathing direct fumes when electrolyte is added.
- 4. Do not add water to electrolyte as it may splash off causing severe burns.

If you spill acid on yourself;

- 1.Flush your skin with water.
- 2.Flush your eyes with water for 10-15 minutes.

Get medical attention immediately.

SERVICE TRACTOR SAFELY

Do not wear a necktie, scarf or loose clothing when you work near moving parts. If these items were to get caught, severe injury could result.

Remove rings and other jeweler to prevent electrical shorts and entanglement in moving parts.

WORK IN VENTILATED AREA

Do not start the Tractor in an enclosed building unless the doors & windows are open for proper ventilation, as tractor fumes can cause sickness or death. If it is necessary to run an engine in an enclosed area remove the exhaust fumes by connecting an exhaust pipe extension which vents the fumes outside the enclosed area.

Using external control

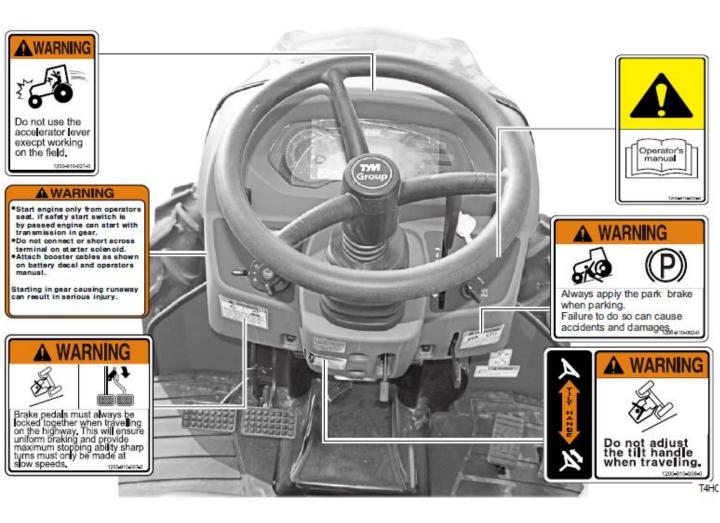
Stand well clear of the rear linkage and implements when using the hitch remote switches or injury can result from moving parts.

TRACTOR RUNAWAY

- 1 .The Tractor can start even if the transmission is in the engaged position causing the Tractor to runaway and cause serious injury to the people standing nearby the tractor.
- 2 .For additional safety keep the pull to stop knob (were fitted)(fuel shut off control) in fully pulled out position. Transmission in neutral position Foot brake engaged and PTO lever in disengaged position while attending to the Safety Starter Switch or any other work on Tractor.

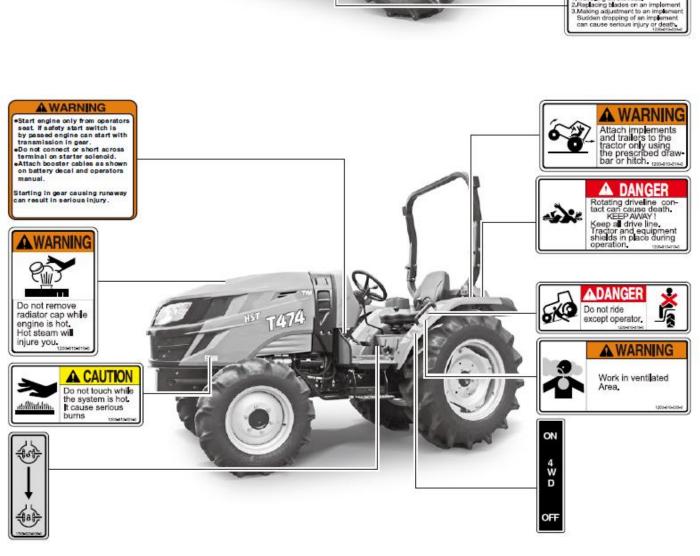
SAFETY STARTER SWITCH

- 1. Clutch operated safety switch is provided on all Tractors which allow the starting system to become operational only when the Clutch pedal is fully pressed.
- 2. Do not By-pass this safety starter switch or work on it. Only Authorized Dealers are recommended to work on safety starter switch.
- 3. On some models Safety Starter switch is provided on transmission High-low shifter lever and in PTO shifter lever. The tractor can be started only if High-low shifter lever is in neutral position.

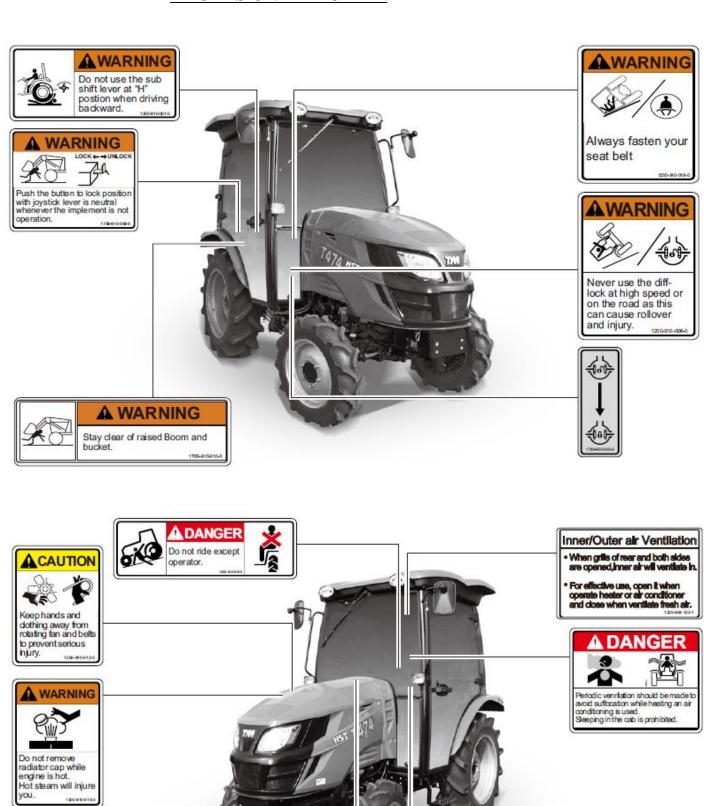

Safety Starter Switch is to be replaced after every 2000 hours/4 years, whichever is earlier

SAFETY DECALS

The following safety decals ARE INSTALLED ON THE MACHINE.


If a decal become damaged, illegible or is on the machine, replace it. The decal part number is listed in the parts lists (Refer to Fig 902 in the parts catalogue)

DECALS ON THE DASH COVER



DECALS ON THE CHASSIS

DECALS ON THE CABIN

WARNING

Work in ventilated

Area.

DPF regneration procedure

in DPF lamp on : and beep, follow below

For further details, consult your Operator's Manual operator

13 B

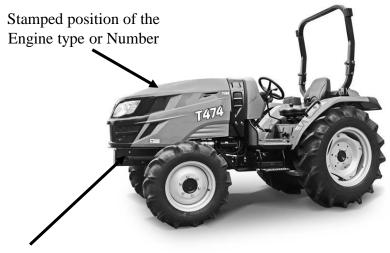
+ Button blinking

PE+EGT ON

1. Raik outside said location
2. Stop all functions.
3. Paking brake CIN,
Perse clutch pedal (Machinical)
4. Engine speed to Max RPM
5. Press the regen button ((3))
6. Must romain with the vehicle

DECALS ON THE CABIN

UNIVERSAL SYMBOLS


Some of the universal symbols have been shown below with an indication of their meaning

	um versur symbols n		n below with an ind		
	Engine speed rev/minX100)	*	Pressured- open slowly	1.*E	Corrosive substance
\square	Hours, recorded		Continuous variable	•	"Tortoise" Slow or minimum Setting
	Engine coolant temperature	A	Warning	D	"Hare" fast or maximum setting
	Fuel level		Hazard warning	Ö	Transmission oil pressure
	Engine Stop control	N	Neutral	수	Turn signal
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Lights	ş	Fan		Transmission oil temperature
Þ	Horn	*	Power take off engaged	(P)	Parking brake
	Engine oil pressure	*	Power take off disengaged		Work lamps
<u> </u>	Air filter		Lift arm/raise		Differential lock
-+	Battery charge		Lift arm/lower	日	See operator's manual
	gen Request	Exi	haust Temp		

SECTION 1. TRACTOR TYPES AND PUNCHED IDENTIFICATION MARKS

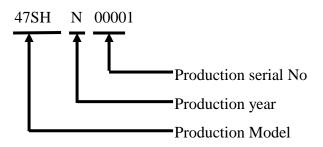
The tractor serial number is shown on the left hand side of the tractor as shown in the picture.

The engine number is stamped on the top of the engine block.

Manufacturer's tractor Sr. No.

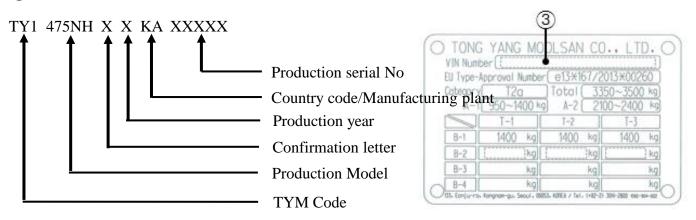
stamped on plate on the L.H.S of Axle bracket

1.MODEL NAME PLATE

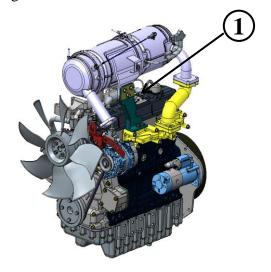

The plate indicates the model and type of the tractor.

① Model name (ex : T475NHUSM1)

② Production I.D No. (ex: 47NHN00001)

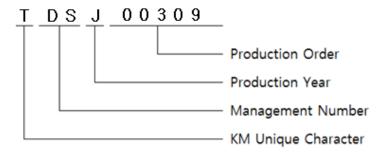

The production I.D reference number is as shown below

47NH N 00001

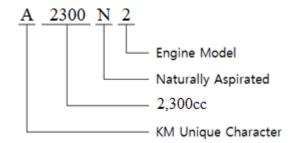


- 2. Engine Model Identification and serial number location.
- 1) Engine identification location ①

2) Engine EPA decal ①



This decal represents that this engine is in compliance with the U.S.EPA and California (CARB) exhaust Emission regulation.


Note: The engine number is necessary information that is requisite for the warranty registration form. Engine number assignment standard

3) Engine number

The Engine number is stamped on the cylinder block.

4) Description of engine model number

Note: When ordering parts or making an inquiry about the engine you are working on, be sure to include the complete model and serial numbers as shown on the engine nameplate.

SECTION 2. SPECIFICATIONS

	MODEL	T475 NH / SH				
	Maker	KM				
	Model	A2300N4				
	Type	Water cooled 4 cycle 4 cylinder diesel				
	Out put (Kw(ps)/rpm)	36 (48.3) / 2,600rpm				
	Number of Cylinder	4				
	Displacement (cu-in/cc)	139.5 / 2,286				
	Bore and Stroke	88 X 94				
	Compression ratio	21.3 : 1				
Engine	Firing order	1-3-2-1				
	Injection pump	-				
	Lubrication type	Forced circulation				
	Cooling system	Water cooled, Forced circulation				
	Coolant capacity	5.3ℓ(1.4 US gal)				
	Air cleaner	Dry single Element				
	Muffler	Horizontal				
	Fuel	Diesel fuel				
	Fuel Tank capacity	34ℓ(9.0 US gal)				
	Battery	12V80AH (Option)				
Electrical	Starting system	Starter motor				
Electrical	Starter Capacity	1.4KW				
	Alternator	12V 70A				
	Transmission	Hydraulic, + Mechanical 3 range gear with constant-mesh				
D	MFWD(4WD)	Standard				
Drive Train	Differential lock	Bevel gears with diff-Lock				
	Brakes	Wet disc brake, mechanical				
	Steering	hydrostatic				
	Pump type	Dual Gear Pump				
	Implement Pump (gpm/Lpm)	6.4 / 24.2				
Hydraulic	Steering Pump (gpm/Lpm)	4.6 / 17.4				
	3P Hitch Lift Capacity (lb/kg)	2,646 / 1,200				
	At 24 in behind link end(lb/kg)	1,764 / 800				

	MODEL		T475 NH / SH
Clutch	PT	O	Multiple wet disk
Dimensions	Overall leng	gth(in/mm)	NH(131/3,320) / SH(133/3,370)
	Overall wid	lth (in/mm)	NH (54.5 /1,385) / SH(59/1,500)
	Overall Heig	ght (in/mm)	NH(94.4 /2,400) / SH(92.5/2,350)
	Wheel base (Distance bet		68.9 / 1,750
	Min. Ground (in / 1		12.8 / 325
	Weight	(lb/kg)	NH(3,320/1,465) / SH(3,605/1,635)
	D1	Front	8-16, 4PR
	R1	Rear	12.4-24, 6PR
	D4	Front	27X10.5-15, 8PR
	R4	Rear	12.5-20 , 12PR
	R3	Front	27X10, 50LL-15, 6PR
	K3	Rear	41X14, 00-20- RL

Implement	Operation	Hydraulic
	Mounting method	3-Point hitch
	Drawing method	Trailer hitch
	3-Point hitch category	Category 1
	Hydraulic-control	Position, Remote control, Joystick

Traveling speeds : Km/h (Mile/h)

	Engine rpm @2,600						
Range shift	Forward	Reverse					
L	~7.1 (~4.41)	~7.1 (~4.41)					
M	~13.6 (~8.45)	~13.6 (~8.45)					
Н	~25.4 (~15.78)	~25.4 (~15.78)					

SECTION 3. GEAR TRAIN DIAGRAMS

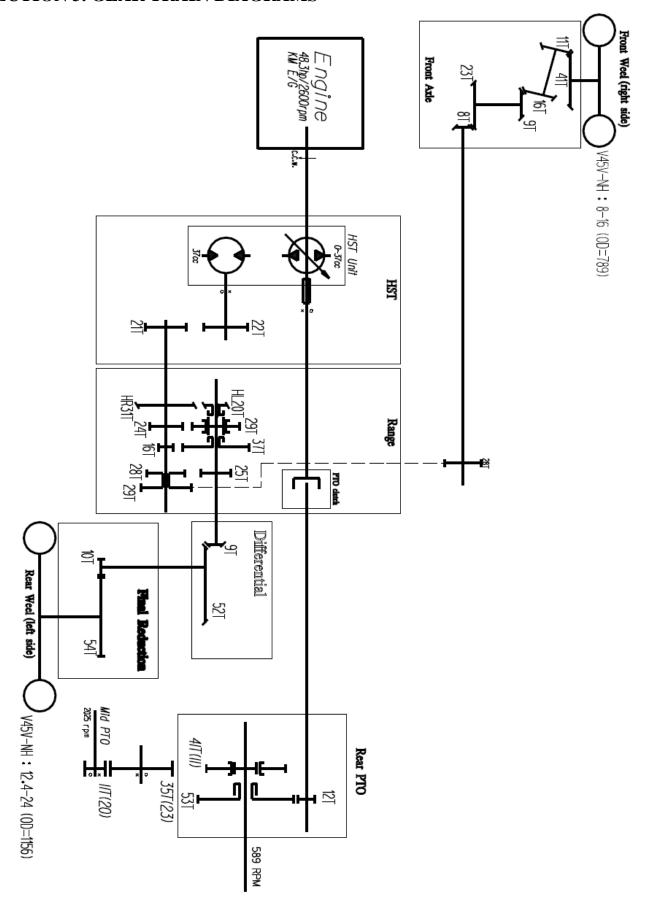
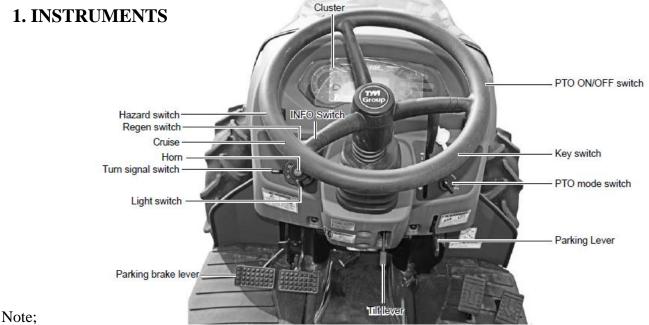
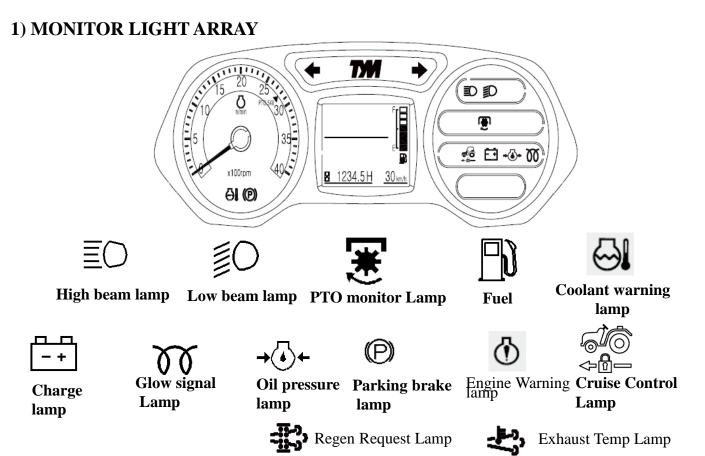
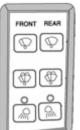




FIG.1-3 GEAR TRAIN DIAGRAM

SECTION 4. PRECAUTION FOR TRACTOR OPERATION

- Oil pressure warning light and charge light on the monitor panel will light when the main switch is turned from OFF to ON.
- When the engine starts all lights on the panel automatically go out and its speed is increased to a specific level.
- Do not panic although some lights are still on while the engine is at idle speed just after starting. They will automatically go out when the engine speed reaches specific level.



2) CABIN Control

Interior Lamp

Recirculation Inlet

Air conditioner, Heater control

Wiper Switch

Washer Switch

Working Lamp Switch

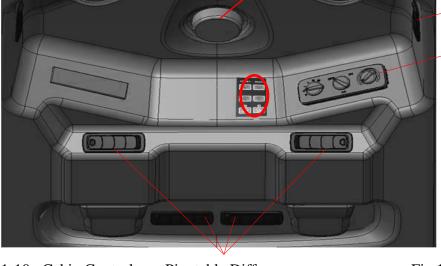


Fig.1-10 Cabin Control

Pivotable Diffuser

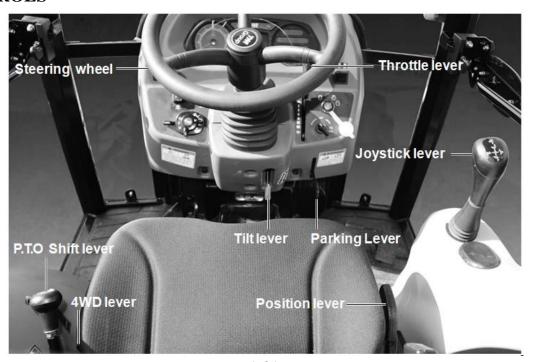
Fig.1-11 Working lamp switch (Cabin)

VENTILATION

The ventilation unit is housed in the cab ceiling.

To switch it on and adjust it, turn the electrical fan switch to the desired speed.

The cab becomes slightly pressurized when the ventilation system is in operation, so that fresh air can enter only by way of the filter installed in the rear section of the cab roof.


The fan switch can be operated only after the ignition key is inserted.

The air flow can be regulated and directed by suitable positioning of the air diffusers.

Air can be taken in fresh from outside or re-circulated from within the cab by way of the relative side inlets Re-circulation inlets fully closed: air is taken in entirely from outside the cab through the rear grille and filtered through a paper element positioned behind the grille.

N.B-it is very important that the air diffusers be never closed completely so as to allow for a steady air flow. To obtain greater pressurization inside the cab, it is necessary to take air from the outside, therefore the inside air re-circulating grille should be fully closed.

2. CONTROLS

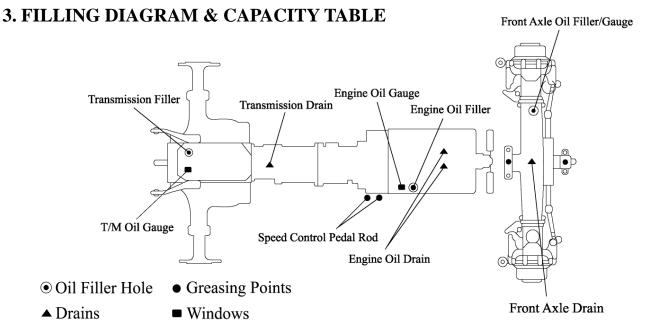


TABLE 1-7

No.	Filling point	Fillings	Quantity Liter (gal)
		T475HST	
1	RADIATOR	50/50 : Ethylene Glycol/Water (L.L.C) ASTM D4985 / D6210	5.3ℓ(1.40 US gal)
2	ENGINE	API : CJ-4 grades SAE 15W/40	4.5 ℓ (1.18 US gal)
3	TRANSMISSION CASE		32ℓ(8.45 US gal)
4	FRONT AXLE	THF 500 (API GL-4 Grades) Gear oil #80 or #90	8.2ℓ(2.166US gal)
5	FINAL DRIVE CASE(B)		8.24(2.10003 gai)
6	Clutch pedal shaft	Grease	As required
7	BALL JOINT	Grease	As required
8	FUEL TANK	Diesel fuel	36ℓ(9.51 US gal)

Tire size and inflation

TABLE 1-8

Tire	DIVISION	SIZE	Air pressure Mpa (PSI)	MODEL
D1 (A a)	Front	8-16, 4PR	0.176 Mpa (25.53 PSI)	
R1 (Ag)	Rear	12.4-24, 6PR	0.176 Mpa (25.53 PSI)	
D4 (T 1)	Front	27X10, 50-15, 8PR	0.380 Mpa (55.11 PSI)	
R4 (Ind)	Rear	12.5-20 R4, 12PR	0.340 Mpa (49.31 PSI)	
D2 (Typef)	Front	27X10, 50LL-15, 6PR	0.220 Mpa (31.91 PSI)	
R3 (Turf)	Rear	41X14, 00-20- RL	0.170 Mpa (24.66 PSI)	

4. MAINTENANCE CHART

ENGINE

Periodic checks and maintenance are very important for keeping the engine in optimum condition. The check contents and timing indicate in below table. So be sure to observe.

Part		Item	Daily	Every 50hrs	Every 250hrs	Every 500hrs	1000hrs or 1 years	2000hrs or 2 years
	Check the	e fuel level and refill	0					
	Clea	nn the fuel tank.		0				
u u	Check the fuel fi	lter and hose related coolant	0					
Fuel system	Replace the	ne fuel filter element.				0		
Fue	Fuel injection valve	Pressure check · adjustment					•	
	Fuel injection pump	Adjust injection Timing						•
gu	Check the	e lubricating oil level	0					
Lubricating	Replace	the lubricating oil.		(1 st time)	0			
Lu	Replace th	e lubricating oil filter.		(1 st time)	0			
ш	Check	the coolant level.	0					
Coolant system	Check the c	logging of the radiator.	0		0			
oolant	Repl	ace the coolant.				0		
O	Adjust	the fan belt tension		(1 st time)	0			
Intake air system		n the air cleaner, ace the element.			0	0		
Engine body	Re-t	ighten the bolts						(Re-tighten)
Eng bo	Adjust the in/	exhaust valve clearance.					•	
Electrical equipment	Check t	the warning lamps.	0					
Elec	Check the	e battery liquid level.		0				

※ ○: Customer check/ ◎: Part exchange/ ●: Check in place to specified location

- O inspection, replenish and adjustment
- Replacement △ Cleaning and/or washing

TRAN	NSMISSION ★ Consult y									your Dealer						
Inspection items	Daily	Ins	spec	tion	Н	Iour	of	oper	inter ration	n	S			Intervals after that	Judgeement criteria	
roms		5	1 0	1 5	2 0	2 5	3 0	3 5	4 0	4 5	5 0	5 5	6 0		mm(in)	
Transmission oil	0	•												Every 500 hours or	Clean hydraulic suction filter at the same time.	
HST oil Filter		•										•		Every 500 hours or 12months after first 50 hours		
Front axle oil (4WD)												•				
Brake pedal	0														Free play: 1.18~1.57 in	
Greasing up each part	0													Replenish after every 50 hrs(every time after pudding)		
Steering wheel free play	0															
Toe-in							*						*	Check every 300 hrs	0.08~0.24 in	
Front wheel hub greasing							0						0	Inject grease after every 300 hrs		
Retightening ball joints of steering system	0						0						0	Check after every 300 hrs		
Wheel tightening bolts	0														All should be tighten (kgf.cm) Front: 1600~1800 Rear: 1600~1800	
Greasing each nipple		0	0	0	0	0	0	0	0	0	0	0	0	Replenish every 50 hrs (Everyday in dusty condition)		
Loose bolts and nuts	0															
Electric wiring	0	0			0			0			0			Check every year		

- O inspection, replenish and adjustment
- Replacement △ Cleaning and/or washing
- ★ Consult your Dealer

Inspection items	Daily	Inspection and servicing intervals Hour of operation (X10 on hour meter)							ratio	n	ls	Intervals after that	Judgment criteria mm(in)		
		5	1 0	1 5	2 0	2 5	3 0	3 5	4 0	4 5	5 0	5 5	6 0		
Electric Parentheses															All should work properly
Adjusting accelerator pedal and throttle lever							*						*	Check after 300 hours	
Oil leaks in clutch housing														Check every year by removing the plug installed in the front bottom of clutch chamber	
Strainer (Hydraulic fluid filter)		Δ					*					•		Clean at first 50 hrs. Replace every 500 hrs. Check every 250 hrs	
Rubber pipes			0		0		0		0		0		0	Check after every 100 hrs.	

- 1) Every terminal should be connected securely
- 2) Wiring should not interfere with other parts.
- 3) Fatigued wiring should be replaced.
- 4) Wiring should be held in each clamp properly.

Chapter 2

Disassembly and reassembly of major components

SECTION 1. GENERAL PRECAUTIONS AND SEPARATION	
AND REINSTALLATION	2-1
1. Before operation	2-1
2. Precautions to be followed when installing standardized parts.	
	2-1
SECTION 2. OPERATION CHART FOR DISASSEMBLY	
AND REASSEMBLY BY MAJOR BLOCKS	2-4
SECTION 3. SEPARATION OF MAJOR COMPONENTS	2-5
1. Separation of the front axle and axle bracket	2-5
2. Separation of the engine and front axle bracket	2-6
3. Separation of the engine and front transmission	2-7
4. Separation of the mid transmission and rear trans mission	2-12
5. Separation of the rear transmission and rear axle housing	2-16
6. Separation of the rear transmission and Cylinder case	2-18

Chapter 2

Disassembly and reassembly of major components

SECTION 1. GENERAL PRECAUTIONS FOR SEPARATION AND REINSTALLATION

1.BEFORE OPERATION

- 1) Always be safety-conscious in selecting clothes to wear and suitable tools to use.
- 2) Before disassembly, be sure that you familiarize yourself with the assembled condition for subsequence in reassembly.
- Keep parts and tools in proper order during operations.
- 4) When servicing electrically charged parts, be sure to disconnect the negative battery terminal.
- 5) To prevent oil or water leaks, use the liquid gasket as required.
- 6) When lifting up only the front or rear part of the tractor, be sure to wedge the grounded wheels.
- 8) When the tractor is jacked up, be sure to support the entire tractor with something like a stand.Lifting it up with a jack only is dangerously unstable procedure.
- 9) When replacing parts, use authorized, genuine TYM parts only. TYM assumes no responsibility for accidents, operating problems or damage caused by the use of imitation parts.

Also, the use of unauthorized parts will result in relatively poor machine performance.

2. PRECAUTIONS TO BE FOLLOWED WHEN INSTALLING STANDARDIZED PARTS.

- (1) Roller or Ball bearings
- 1) When a bearing is fitted in by the outer race, use an installer which is an specially designed to push only the outer race and vice versa.
- 2) The installer must be designed to install the bearing on the shaft in a parallel position.
- 3) When installing a bearing which appears the same on both sides, install it so that the face which has the identification number faces in a direction for easy visual identification. All the bearings which are to be installed in the transmission case should be placed so that their identification number faces outward.
- 4) If a shaft or hole where a bearing is to be installed has a stopper, the bearing should be pushed in completely until it is seated against the stopper.
- 5) Installed bearings should turn smoothly.
- (2) Oil seals
- 1) Oil seals installer should be designed so as not to deform the oil seals.
- 2) During installation, be careful not to damage the lips, and assure that it is pushed in parallel to the shaft or hole.
- 3) When oil seals are installed, there should be no turnover of the lips nor dislocation of the springs.
- 4) When a multi-lip seal is installed, the grooves between lips should be filed with grease, not adhesive.

- (3) O-rings
- 1) O-rings should be coated with grease before installing.
- 2) Installed O-rings should have no slack or twist.
- 3) Installed O-rings should maintain proper air tightness.
- (4) Snap rings
- 1) Snap ring installers should be designed so as not to permanently deform the snap rings.
- 2) Installed snap rings should be seated securely in the groove.
- 3) Be careful not to overload the snap ring to the extent that it is permanently deformed.
- 4) How to install the snap ring:
 When installing a snap ring,install it as shown in the figure with its round edge side turned toward the part to be retained. This round edge is formed when the snap ring is pressed out.

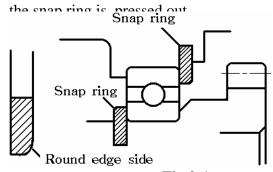
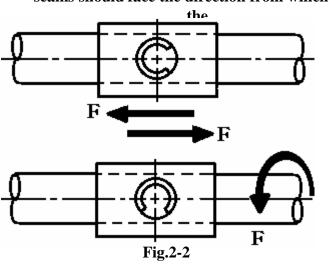



Fig.2-1

(5) Spring(roll) pins

- 1) Spring pins should be driven in properly as tightly.
- 2) Spring pins should be installed so that their seams should face the direction from which

- 3) The roll pins installed in the transmission or other parts where much force is applied should be retained with the wire.
- (6) Cotter pins

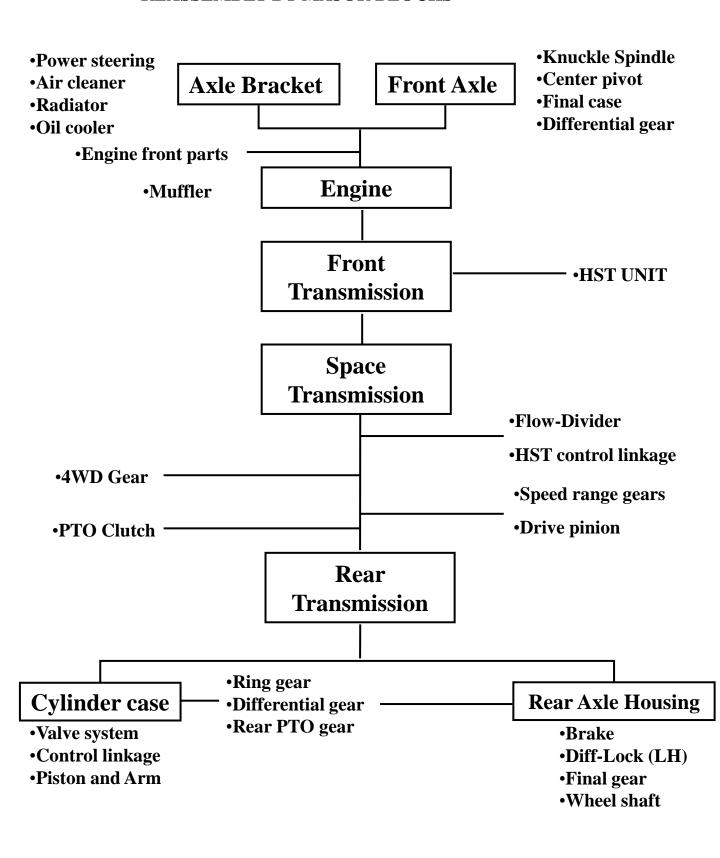
When installed, cotter pins should be bent securely at the ends as shown in the figure

Fig.2-3

- (7) Bolts and nuts
- 1)Special bolts are installed at several locations, so be sure not to interchange them other bolts.
- 2) Bolts and nuts should be tightened to their specified torque wrench.
- 3) When locking the bolts or nuts with wire or a lock washer, Be sure to wind the wire paying sufficient attention to its winding direction and bend the lock washer for secure looking.
- 4) When locking bolts and nuts with an adhesive, apply the adhesive on the thread and tighten securely.
- 5) Apply an adhesive(THREE BOND TB1104) to parts through which there is any possibility of oil leaks, such as stud bolts and tapped-through parts.
- 6) Each lock nut must be tightened securely.
- 7) When tightening bolts and nuts, refer to the tightening torque table.
- (8) After installation, each grease fitting should be filled with grease.
- 1) When installing grease fittings of type B and C, be sure to turn the fitting tips in a direction that will provide easy access for a grease gun.
- (9) Other precautions.
- 1) Be sure not to damage any finished surfaces or parts.
- 2) Always refrain from forcing installation.
- 3) Each lever knob should be installed coated with an adhesive (SUPER THREE CEMENT TB1702)

- 4) Each contact surface should be coated with an adhesive(THREE BOND TB 1215) and tightened evenly with bolts. Adhesive coated surfaces should be installed within 30 minutes after application of the adhesive. The contact surfaces should be flawless and free from foreign matter, and especially from grease before application of the adhesive.
 - 5) Precautions for applying adhesives.

 The surface or the thread where and adhesive is to applied should be completely free of chips.


 The surface or the thread where an adhesive is to be applied should be completely free of oilness.

Bolt Tightening Torque (kgf.m)											
Spec -	4	T		7 T	9T						
	Coarse	Fine	Coarse	Fine	Coarse	Fine					
М3	0.07~0.09	-	-	-	-	-					
M5	0.35~0.45	-	0.5~0.7	-	-	-					
M6	0.50~0.70	-	1.1~1.4	-	1.25~1.45	-					
M8	1.3~1.7	-	2.3~3.0	-	3.0~3.5	-					
M10	2.5~3.5	2.0~2.8	4.5~6.0	3.6~4.8	6.5~7.2	5.2~5.76					
M12	4.5~6.0	3.6~4.8	8.0~10	6.4~8.0	10.5~12	8.4~9.6					
M14	7.0~8.5	5.6~6.8	12~15	9.2~12	17~20	13.6~16.0					
M16	11~14	8.8~11.2	17~21	13.6~16.8	20.5~31	16.4~24.8					
M18	16~19	12.8~15.2	24~29	19.2~23.2	35~41	28~32.8					
M20	22~27	17.6~21.6	33~41	25.4~32.8	50~58	40~46.4					
	* In case of nut torque, 80% torque of above table respectively										

Air-con						
R-12 (R-134a)	Pipe Diam.	Without O-ring	With O- ring	Coupling-Hy	Hydraulic (Kgf-m)	
7/16-20UNF (-)	1/4",D6	1-1.5	-	1/4**	2.5	
9/16-18UNF (M16xP1.5)	5/6",D8	2-3	1-2	3/8"	5	
5/8-18UNF (M18xP1.5)	3/8",D9.52	2-3	1-2	1/2**	6	
3/4-16UNF (M20xP1.5)	1/2", D12.7	3-4	1.5-2.5	3/4"	12	
7/8-14UNF (M22xP1.5)	5/8",D15.8	4-5	2-3	1"	14	
11/16-14UNF (-)	3/4",D18.9	5-6	2.5-3.5	1-1/4"	17	
11/14-12UNF (-)	7/8",D22.2	6-7.5	3-4	1-1/2"	21	

Nut-Bearing (kgf.m) (Calking Nut only)											
A N 0 2	AN03	AN04	AN05	AN06	AN07	A N 0 8	AN09	AN10	AN11	A N 1 2	
M 1 5	M 1 7	M 2 0	M 2 5	M 3 0	M 3 5	M 4 0	M 4 5	M 5 0	M 5 5	M 6 0	
2 - 4	2 - 4	3 - 5	3 - 5	3 - 5	6 - 8	6 - 8	6 - 8	8-10	8-10	8 - 1 0	

SECTION 2. OPERATION CHART FOR DISASSEMBLY AND REASSEMBLY BY MAJOR BLOCKS

SECTION 3. SEPARATION OF MAJOR COMPONENTS

1.SEPARATION OF THE FRONT AXLE AND AXLE BRACKET

Parts which can be inspected during This operation

- -Center pivot
- -Final case
- -Differential gear
- (1) Removal
- 1) Hold the front hitch or the front bracket securely with a crane or stands.
- 2) Support the front axle with a jack
- 3) Remove the power steering hoses to the power steering cylinder.
- 4) Remove the pivot metal bolts.
- 5) Remove the front axle assembly forward.

Power Steering Hoses

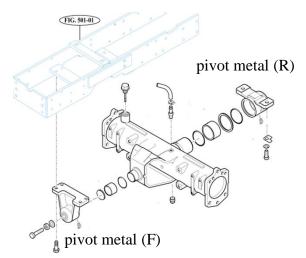


FIG.2-4 Front axle

Note:

When working on the 4WD version, the drive shaft should be removed ahead of time.

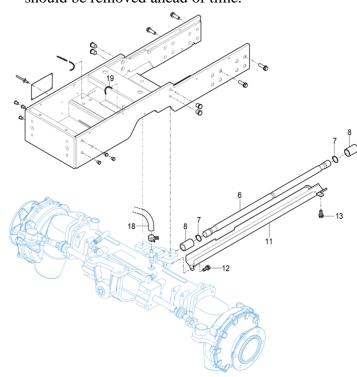


FIG.2-5 Drive shaft

- (2) Installation
- 1) Install the front axle assembly.
- 2) Install both pivot metals(supports)

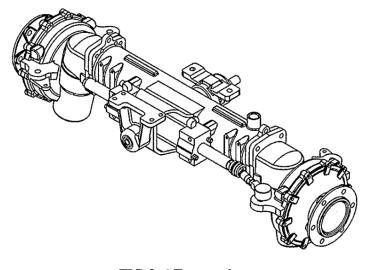


FIG.2-6 Front axle

Apply grease to the bushing and fill the oil seal with grease ahead of time. Install the oil seal carefully not to allow its lips to turn over.

3) install both of the right and left tie rod.

Note:

2.SEPARATION OF THE ENGINE AND THE FRONT AXLE BRACKET

Parts which can be inspected during This operation

- -Air cleaner
- -Radiator
- -Power steering system
- -Oil cooler
- -Engine front part.
- (1) Removal
- 1) Hold or support the engine with a crane or stands.
- 2) Hold or support the front bracket or the axle bracket in a manner that the part other than the engine can be removed if required.
- 3) Open the Engine hood.

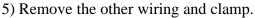


FIG.2-7 Hood and damper

4) Disconnect the positive and negative battery cables.

FIG.2-8 Battery

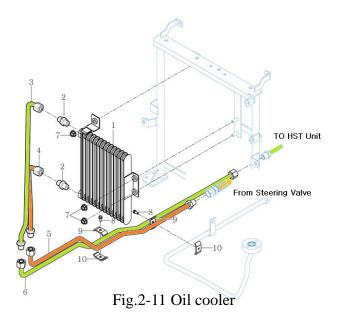

- 6) Remove the fuel hoses.
- 7) Remove the upper hose, lower hose and drain hose from the radiator.
- 8) Remove the steering hoses.
- 9) Remove oil cooler pipes in the middle of them from the axle bracket.

Fig.2-9 Fuel filter

Fig.2-10 Oil cooler

10) Remove the mounting bolts.

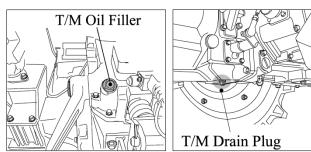
Note:

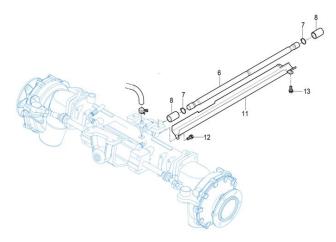
When the pipes related to the hydraulic system are removed, their openings should be covered with plastic caps or the like to keep out dust or other foreign matter.

(2) installation

Reassemble in reverse order of removal.

- 1) Install the axle bracket on the engine.
- 2) Retighten the mounting bolts.
- 3) Connect the piping of the power steering system.
- 4) Install the battery cables, other wiring and clamp.
- 5) Install the pipes of the oil cooler.
- 6) Connect the upper, lower and drain radiator hoses.
- 7) Install the fuel hoses.
- 8) Fill the radiator with coolant.


3.SEPARATION OF THE ENGINE AND THE FRONT TRANSMISSION.


Parts which can be inspected during this operation.

- -Fly wheel
- -HST unit

(1) Removal

Drain the transmission of the oil if needed.
Remove the front wheel drive shaft.
Disconnect the battery cables.
Wedge both sides of the front axle to prevent the engine from tilting.

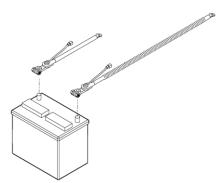
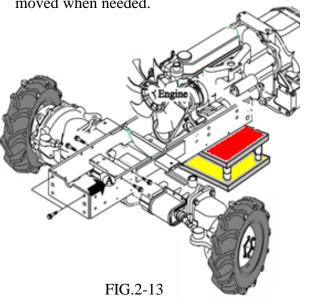



FIG.2-12

- 2) Support the engine on the bottom with a jack or stands.
- 3) Hold the transmission with a garage jack or a crane so that the transmission side can be moved when needed.

6) Disconnect the pipes for the oil cooler. Remove the fuel hoses.

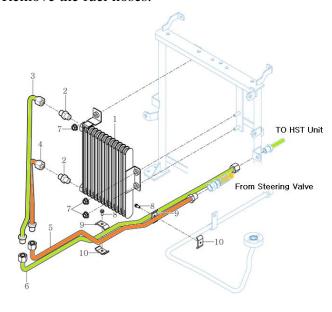
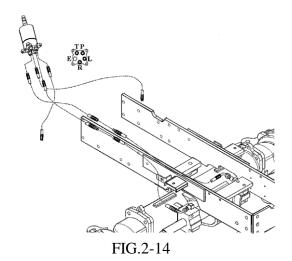



FIG.2-16

4) Disconnect the hydraulic hoses for power steering.

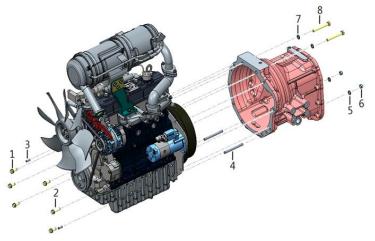
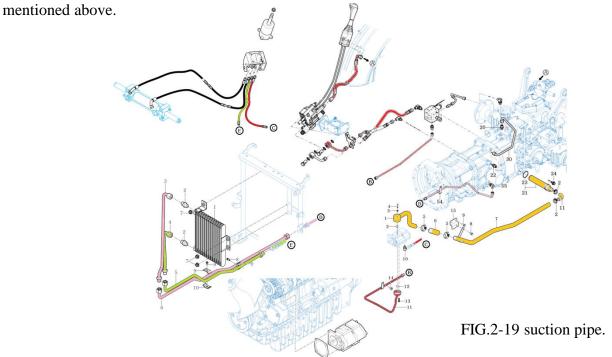
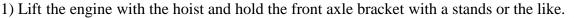
5) Disconnect the rubber hose from the suction pipe. Disconnect the pipe from gear pump.

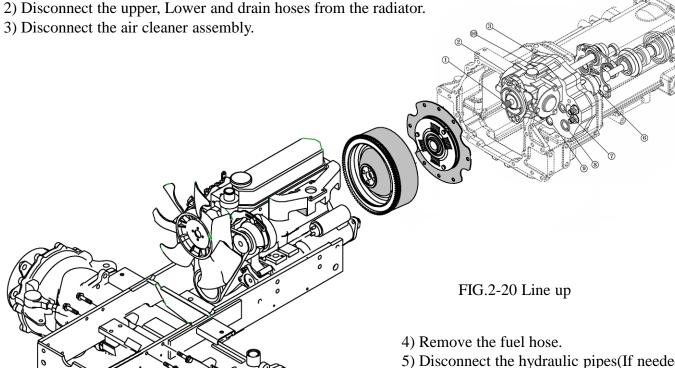
FIG.2-15

7) Detach the wiring harness.

FIG.2-17

8) Remove the mounting bolts and nuts.


FIG.2-18

(2) Engine separation from the chassis.

When separating the engine from the chassis, the following steps are required as well as the ones

- 5) Disconnect the hydraulic pipes(If needed).
- 6) Loosen the tightening bolts on the front axle bracket.
- 7) Separate the engine from the front axle bracket.

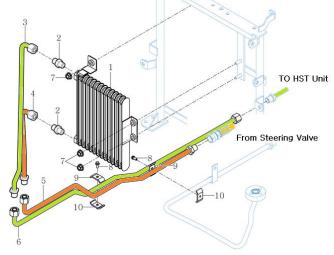
(3) INSTALLATION

REASSEMBLY IN REVERSE ORDER OF REMOVAL.

- 1) Install the engine on the front axle bracket.
- 2) Retightening the tightening bolts on the front axle bracket.
- 3) Connect the fuel hoses.
- 4) Connect the radiator hoses.
- 5) Install the air cleaner assembly.
- 6) Assemble the engine and the front transmission.

Note:

- Apply small mount of grease to each of the sliding parts.
 Be careful not to apply excessive amount of grease as this could cause clutch slipping.
- During operation, be sure to avoid any of the reassembly operations that may place load upon the input gear.
- 7) Install the hydraulic pipes.
- 8) Install the steering pipes.
- 9) Install the wirings and clamp.
- 10) Connect the battery terminals.


4.SEPARATION OF THE MID TRANSMISSION AND REAR TRANSMISSION

Parts which can be inspected during This operation

-HST unit -PTO clutch -Range gears

- 1) Removal
- A:Removal of the whole floor.
- 1) Disconnect the negative battery cable.
- 2) Detach all the wiring relevant to the removal of the floor.

- 3) Remove the steering pipes from hydraulic cylinder. Disconnect the fuel hoses.
- 4) Disconnect the oil cooler pipes in the middle.
- 5) Disconnect the hydraulic pipes at the hydraulic pump. Remove the front end loader valve from the bracket.
- 6) Remove the Forward and Reverse pedals in the middle.
 Remove the pins which is connected between the brake rod and the linkage.

7) Remove the slow-return check valve knob.

Remove the diff-lock pedal.

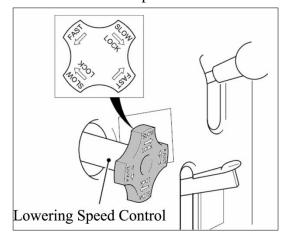


FIG.2-23 Slow return check valve

8) Remove the knob of remote control lever.

When the tractor is equipped with an optional remote control valve, remove the remote control valve link.

Remove the knob of the position control lever.

Remove the knob of Rage gear lever.

Remove the 4WD shifting lever.

Remove the knob of the PTO lever.



FIG.2-24 remote control valve lever

- 9) Remove the parking brake (If equipped).
- 10) Remove four rubber mounts.

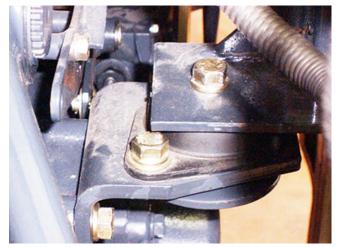


FIG.2-25 Rubber mounting

- 11) Lift up the floor or cabin assembly slightly with a hoist.
- 12) Disconnect the clamp which is tied.
- 13) Remove the heater hoses or the hoses can be separated in the middle.

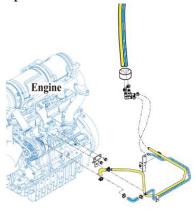
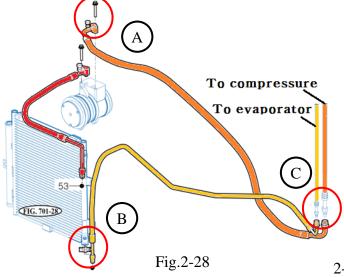



Fig.2-27 Heater hoses

14) Remove the coupler (Air-conditioner hose). It is possible to disconnect A and B or C point.

15) Lift the cabin gradually taking care not to allow the shaft of the slow-return check valve and its hole in the floor to interfere with each other.

Note: Lift up the cabin gradually making sure that all relevant wiring. Piping, cock and links are disconnected. Hold the Cabin assembly with the rope at the four corners as shown below.

Fig.2-30 4 hangers to be lifted

(2) Installation

Reassemble in reverse order of disassembly.

Note: Be careful not to mix the LH, RH direction of the power steering hoses. If the steering will be confused, the engine

Note: When reinstalling the Cabin assembly, the brake rod should be adjusted.

should be stopped at once.

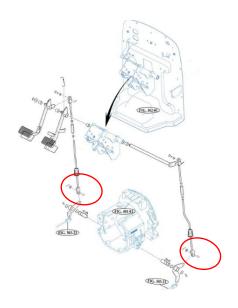


Fig.2-31 Brake linkage

2-13

- B: Division of the chassis.
- 1) Drain the transmission of oil
- 2) Remove the front wheel drive shaft

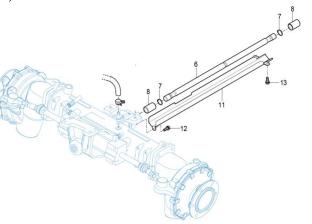


FIG.2-33 Front wheel drive

3) Disconnect the brake rods.

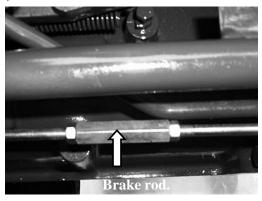


FIG.2-34 Brake rod.

4) When the tractor is equipped with an optional remote control valve ,remove the remote control piping.

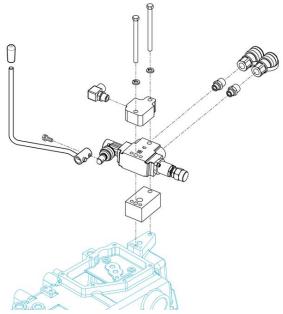


FIG.2-35 Remote control valve

- 5) Remove the suction and delivery pipes.
- 6) Remove the delivery pipe for the PTO clutch.
- 7) Remove the 4WD shift metal

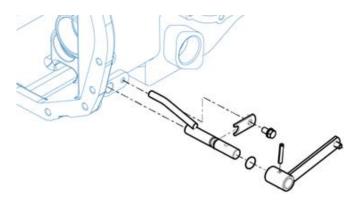
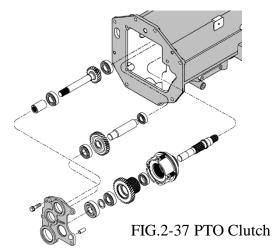


FIG.2-36 4WD shift metal

- 8) Hold the space and rear transmission case with a crane or jack.
- 9) Remove the bolts which tighten the front transmission and spacer transmission cases. Remove the rod for HST unit control.
- 10) Remove the front transmission case and the HST unit
- 11) The spacer and rear transmission assembly will be separated.

Note:

When moving the rear part of the tractor. be careful not to allow the garage jack to shift from the spacer transmission case.


2.installation

Reassemble in reverse order of disassembly.

(1) Assemble the spacer transmission on the rear.
Install the HST unit on the spacer transmission case.
Install the front transmission case.

Note: Make sure that the turning lock of the PTO clutch is securely seated in the groove in the spacer transmission case.

- (3) Install the PTO clutch and HST unit delivery piping.
- (4) Install the 4WD shift metal and the brake rods.
- (5) Install the hydraulic pipes.
- (6) Install the front wheel drive shaft.

Note: Position the floor taking care not to allow wiring or other parts to be pinched under it

- (7) With the floor lifted up a little, install the fuel hoses.
- (8) Fix the floor at the four rubber mounts.
- (9) Install all levers, knobs, and Rods.
- (10) Install the wirings and clamp.
- (11) Connect the negative battery cable.
- (12) Fill the transmission case with oil T475HST: 32ℓ

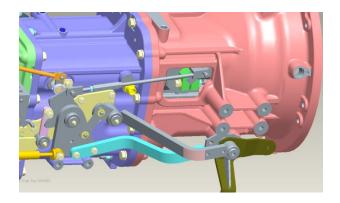
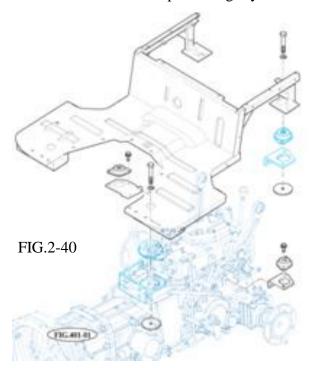
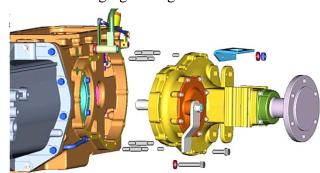


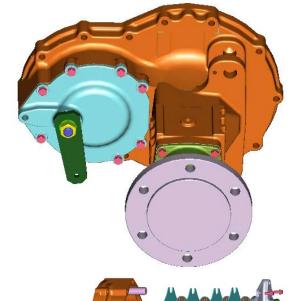
FIG.2-39 forward and Reverse arm


5.SEPARATION OF THE REAR TRANSMISSION AND REAR AXLE HOUSING

Parts which can be inspected during This operation

- Diff Lock
- Brakes
- -Final gears
- 1) Removal


As both sides can be disassembled in the same way, only side with the diff-lock installed will be explained here.


- (1) Drain the transmission case of oil.
- (2) Support the rear transmission with a jack or stands.
- (3) Hold the floor frame assembly with a crane.
- (4) Remove the tire.
- (5) Remove the mounting bolt along with rubber bracket. Loosen the three other points slightly.

(6) Remove the 3-point linkage and related parts.

(7) Detach the brake assembly from the rear transmission case after removing the rear axle housing tightening bolts.

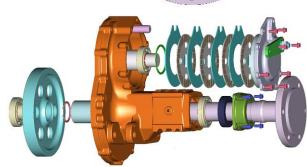


FIG.2-41

2) Installation

Reassemble in reverse order of disassembly.

(1) Join the rear axle housing and rear transmission

Note:

Make sure that the diff-lock shifter is fitted into the groove in the dif-lock metal

- (2) Reinstall the other removed parts.
- (3) Mount the rear tire.
- (4) Refill the transmission with oil up to the specified level.
- Level up to fill the oil can be sought from the rear side of rear transmission case(Window).

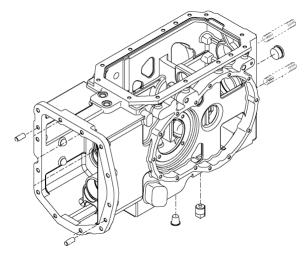


FIG.2-42

6.SEPARATION OF THE REAR TRANSMISSION AND CYLINDER CASE

Parts which can be inspected during This operation

- Control valve
- Control linkage
- Piston and lift crank linkage
- PTO change gears.

Inspection and service of the rear transmission should be performed following the instructions in the paragraph: 5 SEPARATION OF THE REAR TRANSMISSION AND FRONT TRANSMISSION

- 1)Removal
- (1) Remove the operator's seat(If required).

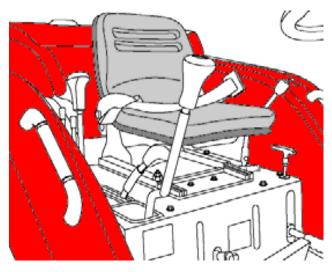


FIG.2-30 operator's seat

- (2) Remove the position lever
- (3) Remove the lever guide(RH)
- (4) When the tractor is equipped with an optional remote control valve, remove the remote control lever and related parts from the bracket.
- (5) Remove the back panel(If needed).
- (6) Remove the tank cover(If needed).
- (7) Remove the wiring for the rear combination lamps and trailer socket coupler(If needed).
- (8) Drain the fuel of fuel tank(If needed).
- (9) Remove the fuel tank and tank stay bracket (If needed).

- (10) Detach the delivery pipe from the cylinder case.
- (12) Remove the slow-return check valve along with the shaft.
- (13) Remove the 3-point lift link and related parts from the lift arm.
- (14) Remove the Cylinder case tightening bolts.
- (15) Detach the cylinder case assembly from the rear transmission

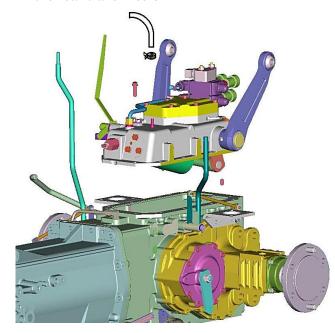


FIG.2-31 cylinder case

2) Installation

Reassemble the reverse order of disassemble.

(1) Tighten the cylinder case on the rear transmission case to the specified torque.

Tightening torque	550~700 kgf-Cm	
	(39.8~50.6lb.fts)	

(2) After reassembly, make sure that the system functions properly.

Chapter 3 ENGINE ACCESSORIES

SECTION 1. RADIATOR	3-1
1. General description	3-1
2. Radiator	3-2
3. Specifications	3-3
4. Removal of the radiator	3-3
5. Inspection of each part	3-3
6. Radiator reassembly	3-5
7. Daily inspection	3-5
8. Trouble shooting	3-6
SECTION 2. AIR CLEANER SYSTEM	3-7
1. General description	3-7
2. Element air cleaner	3-8
3. Inspection of each part	3-9
4. Cleaning of the air cleaner	3-9
5 Flement installation	3 _10

Chapter 3. Engine accessories

SECTION 1. RADIATOR

1.General description

The pressure cooling system includes mainly the radiator, water pump, multi-blade fan, and

the thermostat. During the warm-up period, the thermostat remains closed and coolant is directed through by-pass to the suction side of the water pump.

Coolant then circulates through the cylinder block and water pump only to provide a uniform and fast warm-up period. Once the engine has reached operating temperature, the thermostat opens and coolant is pumped from the bottom of the radiator via the lower hose into the cylinder block. Here it circulates through the block and around the cylinders.

From the cylinder block, coolant is directed through the cylinder head and into the thermostat housing. With the thermostat open, coolant passes through the housing and upper radiator hose into the top of the radiator where it is circulated to dissipate heat.

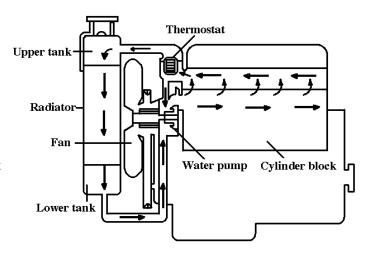


FIG.3-1

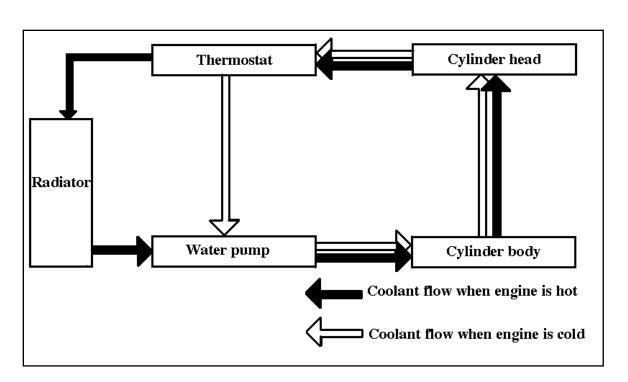
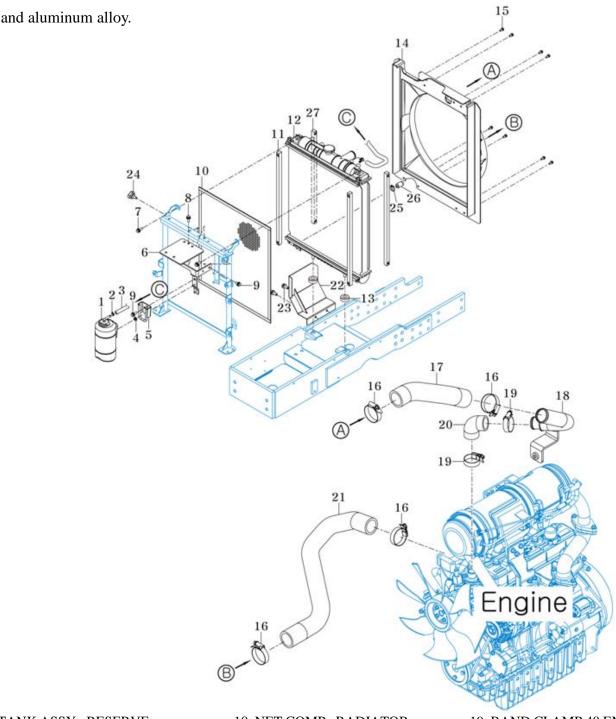



FIG.3-2

2. Radiator

The radiator consists of radiator cores, a tank to Flow coolant, side plates to install the radiator, and a fan guide. Fin-tube type cores are used and the cores and tank is made of anti corrosive aluminum

- 1.TANK ASSY, RESERVE
- 2. CLIP, HOSE D=12.5
- 3. HOSE, RESERVOIR TANK
- 4. NUT, HEX FLANGE
- 5. HOLDER COMP, TANK/RESERVE
- 6. BRACKET COMP, DATA LOGGER
- 7. BOLT, HEX/S
- 8. BOLT, HEX/SP
- 9. BOLT, HEX/SP

- 10. NET COMP, RADIATOR
- 11. SPONGE, RADIATOR SIDE
- 12. RADIATOR SET
- 13. CUSHION RUBBER, RADIATOR 22. BRACKET COMP, GUIDE
- 14. SHROUD
- 15. BOLT, HEX/SP
- 16. BAND CLAMP 50 EMBO TYPE
- 17. HOSE, RADIATOR INLET B
- 18. PIPE COMP, COOLANT JOINT

- 19. BAND CLAMP 40 EMBO TYPE
- 20. HOSE, RADIATOR INLET A
- 21. HOSE, RADIATOR OUTLET
- 23. BOLT, HEX/SP
- 24. BOLT, GRIP(M6)
- 25. BAND CLAMP 16 EMBO TYPE
- 26. CAP, RADIATOR
- 27. SPONGE, SIDE 500

3. SPECIFICATIONS

Description	T475HST
Radiator core type	Flat water tube with corrugate fins
Core train number	4 trains
Radiator fin pitch	4.0 mm
Thermal radiator area	11.7877 m ²
Pressure valve opening pressure	$0.9\pm0.15\mathrm{Kgf/m^2}$
Coolant capacity	5.3 \(\(\)(contains in cylinder block \)
Test pressure	0.9±0.15 Kgf/cm²

4. REMOVAL OF THE RADIATOR

- 1) Release the clamp and remove the upper hose.
- 2) Release the clamp and remove the lower hose.
- Release the hose clamp and remove the water drain hose.

Note:

- Refer to the paragraph"SEPARATION OF THE ENGINE AND THE FRONT AXLE BRACKET in chapter 2 for operation up to this step.
- -When removing the radiator, take care not to damage the radiator cores and oil cooler.

5. INSPECTION OF EACH PART

(1) Inspection for radiator water leaks.

Water leaks are liable to occur at the fitting portion between the upper tank and the core section or between the lower tank and the core section.

If any water leak should occur there,repair the leak by soldering. Besides making a visual check, a more complete inspection should be accomplished as follows:

a. Leak test with compressed air.

Place the radiator as shown in the figure. Close the openings for water inlet and with something like a rubber plug and apply compressed air (1kgf/m² or 14.2psi) through the drain pipe into the radiator.

Excessively compressed air may damage the cores, so perform the air delivery carefully, watching the pressure gauge. Water leaks are inspected by watching for rising air bubbles.

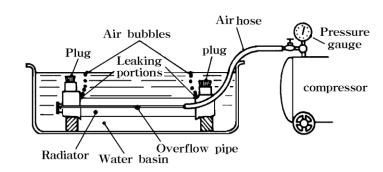
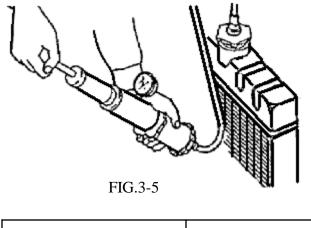



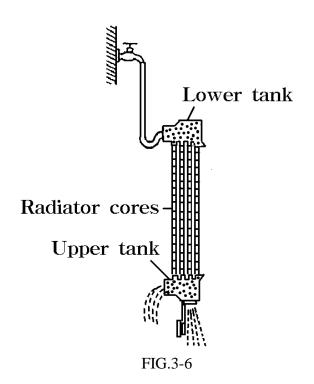
FIG.3-4

b.Leak test with a radiator cap tester

With the inlet and outlet pipes plugged up and the radiator filled with water,replace radiator cap with a radiator cap tester as shown in the figure. Pump up the pressure in the radiator to the specified value and check to see if there are any leaks in the radiator.

When the radiator is water-tight, the pressure indicated on the pressure gauge does not increase, but if there are leaks, the pressure decreases. This tester is also applicable for leak tests for the whole cooling system, not only for the radiator. The test method is the same as mentioned above.

Testing Pressure	1.8Kgf// (m²
------------------	---------------------


2) Inspection for radiator clogging

To inspect the radiator cores to see if they are clogged with fur or rust, remove the radiator cap and check for transparency of the coolant, and for rust or fur formation around the radiator throat inside the radiator.

If some rust or fur has formed or the coolant transparency is very poor, the radiator should be cleaned.

a. Cleaning the radiator inside.

-Place the radiator upside down and supply pressurized water from a faucet to the lower tank, draining through the upper tank, as shown in the figure to wash out accumulated deposits.

-Clean with a detergent

When cleaning the radiator with a detergent, follow the instructions given by its manufacturer. Different detergents have different characteristics.

b. Cleaning the radiator exterior

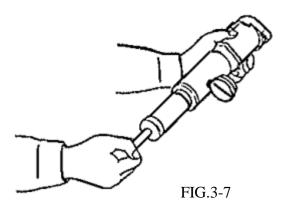
- Cleaning the net (wire mesh)
After the tractor has been operated in dusty conditions, check the net daily and clean it if necessary.

-Cleaning the radiator cores

Clean the radiator cores by applying water spray or compressed air so as to for a right angle with the radiator cores, moving water application in parallel.

Note:

When cleaning the radiator cores with pressurized water, be sure to apply it at a right angle to the cores. Slanted application might deform their cooling fins.


3) Visual inspection of the exterior parts

When the radiator exterior is corroded, cracked, or badly damaged, replace the radiator. Also replace damaged or fatigued water hoses.

Retighten loose hose clamps securely if water is leaking through the hose clamps securely ,or replace them if necessary.

4) Inspection of the radiator cap.

Check the radiator cap to see if it functions normally, using a radiator cap tester as following.

3-4

Pressure valve	0.9 Kgf/ cm²
Opening pressure	(12.79 psi)
Vacuum valve	0.04-0.05 Kgf/ cm²
Opening pressure	(0.57-0.71psi)

-Function test:

The pressure type radiator cap has a pressure valve and a vacuum as shown in the figure.

Both valves are held against there seats by springs while the pressure in the cooling system remains within a specified range, thus keeping the cooling system air-tight.

When the pressure in the radiator rises higher than the specified valves, it overcomes the force of the pressure valve spring and open the pressure valve to release excess pressure through the overflow pipe as shown in the figure.

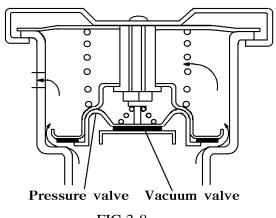
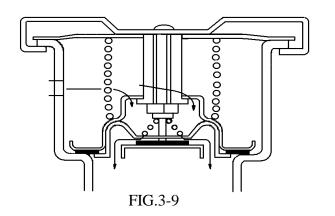



FIG.3-8

When the coolant temperature falls enough to cause the vapor to condense in the cooling system and decrease the coolant volume, the radiator pressure becomes negative. When this occurs, the vacuum valve opens to let outside air into the radiator as shown in the figure,

thus preventing the radiator from being deformed.

6. RADIATOR REASSEMBLY

Reassemble the radiator in the reverse order of disassembly.

Note:

- The rubber hoses should be clamped securely and must not interfere with the cooling fan.
- The radiator cores must not interfere with the cooling fan.

7. DAILY INSPECTION

1) Coolant level inspection and coolant replacement

When the radiator is hot after operation, be sure to wait until the coolant cools down sufficiently before removing the radiator cap.

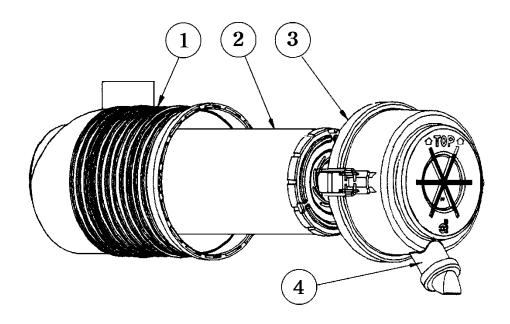
If this is not done, heated vapor might burst out and cause burns. Use fresh water from a faucet as the coolant. When the coolant is replenished or changed, let the engine idle for a while for the coolant to circulate sufficiently in the cooling system and replenish if necessary after stopping the engine.

2)Antifreeze

When The weather is cold, use an antifreeze to prevent the engine from freezing. The freezing point differs according to the mixture ration of water and antifreeze. Therefore, prepare an antifreeze solution which will have a freezing point 5°C lower than the estimated lowest atmospheric temperature in your environment.

Precaution for filling antifreeze.

- The radiator interior should be washed clean ahead of time.
- As concerns of mixing ratio of an antifreeze, follow its manufacture's instructions.
- Antifreeze should be blended well with water before filling.
- When the coolant level is lowered due to evaporation,maintain the level by adding water, not by using an antifreeze solution.
- When the coolant level is lowered due to leaks, maintain the level by adding an antifreeze solution of the same mixing ratio.
- As antifreeze corrodes point,take care not to spill it on painted parts.
- -The tractor is filled with a permanent type antifreeze (Mobile Long Life Coolant) when shipping(mixing ratio:50%)


Problems	Causes Countermeasures		
1) Overheating	(1) Low coolant level	(1)Replenish coolant and inspect water leaks.	
	(2) Fatigued pressure valve spring	(2)Replace radiator cap.	
	(3) Loose or broken fan belt	(3)Adjust belt tension or replace.	
	(4) Oily fan belt	(4)Replace.	
	(5) Poor thermostat	(5)Replace.	
	(6) Poor water pump or water leaks	(6)Repair or replace.	
	(7) Clogged water passages	(7)Clean radiator and water passages.	
	(8) Improper injection timing	(8) Adjust injection timing.	
	(9) Clogged air ways	(9) Clean radiator exterior.	
	(10) Fuel gas enters water jacket due to broken cylinder gasket	(10) Inspect cylinder head and replace cylinder gasket	
2) Overcooling	(1) Poor thermostat	(1)Replace	
	(2) Excessive low atmospheric temperature	(2) Decrease radiator working area by radiator masking.	
3)Lose of coolant	(1) Leaking radiator	(1)Repair or replace	
	(2) Loosely clamped or broken water hose (2)Retight		
	(3) Fatigued pressure valve spring	(3)Replace radiator cap	
	(4) Leaking water pump	(4)Repair or replace	
	(5) Water leakage through cylinder head gasket	(5) Inspect cylinder head and Replace gasket	
	(6) Cracked cylinder head or body	(6)Replace	
4) Noisy cooling	(1) Poor water pump bearing	(1)Replace	
fan	(2) Loose or bent fan	(2)Retighten or replace	
	(3) Unbalanced fan	(3)Replace.	
	(4) Poor fan belt	(4)Replace.	

SECTION 2. AIR CLEANING SYSTEM

1.GENERAL DESCRIPTION

Unfiltered air contains many particles harmful to the engine such as dust ,sand,or other foreign matter. When such foreign matter have entered in to the engine, They have mixed into the lubricant and promote wear of lubrication parts in addition to damaging the piston cylinders. To eliminate these harmful particles, an air cleaner has been installed. The air cleaner Which is installed on the T series tractor is a dry, cyclone type and is constructed as shown in the figure.

Under the influence of suction generated by the engine, unfiltered air flows through air inlet tube and is forced into a high-speed centrifugal motion. By this circulating action most of the dust and dirt particles are separated from the air and collected in the dust unloading valve(4). The remaining dust is removed as the air flows through the paper element(2) before being drawn into the engine.

1 Body 2 Paper element outer 3 Cover assy 4 Dust unloading valve

FIG.3-10 Air Cleaner

2.ELEMENT AIR CLEANER

(1) SPECIFICATIONS.

Model	T475HST
Туре	Dry, paper element filtering type
Rated intake air volume(m³/min .(cu.ft/min)	4.25(150)
Air venting resistance (mmAq)	140 or less
Total filtering efficiency(%)	99.9 or over
Dust holding capacity (gr)	700
Filtering area (m²)(sq.in)	1.65±4%
Filter material	PAPER
Temperature	-30~80°C

(2) DISASSEMBLY

1) Element removal

Remove the wing bolt which clamps the paper element and take out the element.

1. AIR CLEANER ASSY

- 1-01.Body
- 1-02. ELEMENT
- 1-03.Cover
- 2. BAND CLAMP 92
- 3. HOSE, AIR INLET FR
- 4. DUCT, AIR INLET
- 5. BOLT, HEX/SP
- 6. HOSE, AIR INLET RR
- 7. BAND CLAMP 64
- 8. DUCT SEAT
- 9. BOLT, HEX/SP
- 10. BRACKET COMP, BATTERY
- 11. RUBBER COMP
- 12. BOLT, HEX/SP
- 13. BRACKET COMP, AIRCLEANER

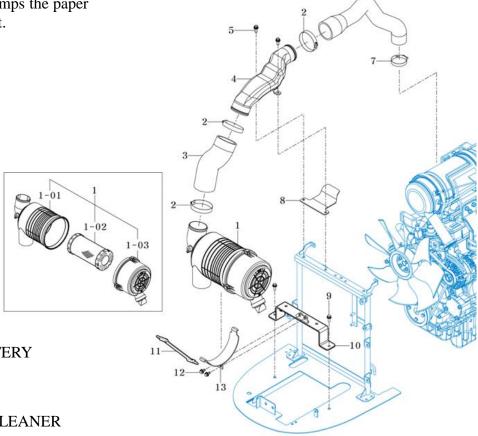


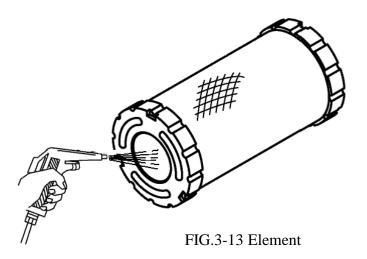
FIG.3-11

3. INSPECTION OF EACH PART

- 1) Inspection of the cleaner body
- (1) Check the cleaner exterior for cracks, deformation, or damage and repair or replace if necessary.
- (2) Check each packing for fatigue or damage and replace if necessary.

- Inspection of rubber hoses
 Check the rubber hoses for fatigue or damage and replace if necessary.
- 3) Inspection of the paper element to check the element for damage, Dry it sufficiently after washing and put an electric bulb in to the element and look for damage.

FIG.3-12 Element check


Note:

Especially note the glue portions of the paper and metal parts.

4. CLEANING THE AIR CLEANER

Clean the air cleaner after 100 hours of operation or less depending on conditions in the following manner.

- 1) When the air cleaner is cleaned or the element is replaced, dust accumulated inside the air cleaner body should be removed with a cloth. As inhaled dust causes engine wear, remove a dust accumulated inside the inlet pipe, the rubber hose which connects in the inlet pipe and the air cleaner, the inlet manifold, and inlet port.
- (1)When accumulated dust is dry.
- -When removing the dust in the element, hold the element by a hand and pat the side wall with other hand. Never hit the element against a stone or a concrete wall because that might cause its side wall to peel off.
- -apply compressed air from inside of the element to blow dust off while turning the element by hand.

Note:

The compressed air to be applied should not have a pressure of more than 7kg/m²(99.6psi) Maintain sufficient distance between the air gun and the element.

- (2) When accumulated dust is oily.
- -Use a solution of TC 101 element detergent or the quality household neutral detergent. Leave the element in the solution for approximately 30 minutes and then wash it by dipping it in and out of the solution.

5.ELEMENT INSTALLATION

Install the element in the reverse order of disassembly, but follow these instructions.

- 1) Each tightening clamp must be secured and care must be taken not to miss the packing and washers.
- 2) Before installing the element, clean the rubber packing on the top of the element.

Note:

The clamp retaining the element should be tightened sufficiently so that it will not become loose during operation

Chapter 4

HST SYSTEM

SECTION 1. INTRODUCTION 4-1
SECTION 2. GENERAL SPECIFICATIONS 4-2
SECTION 3. COMPONENT LOCATION 4-3
SECTION 4. TROUBLESHOOTING 4-0
SECTION 5. DIAGNOSTICS 4-8
SECTION 6. THEORY OF OPERATION 4-9
SECTION 7. TESTS AND ADJUSTMENT 4-15
SECTION 8 REPAIR 4.10

SECTION 1. INTRODUCTION

1. Introduction

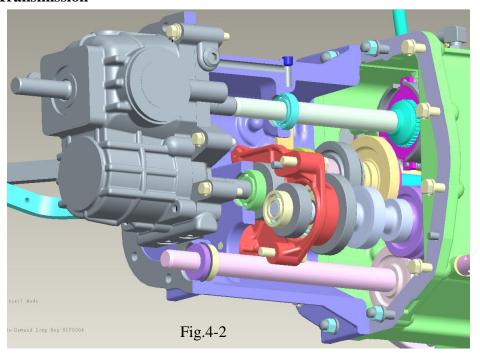
This Manual describes the specifications, structure, mechanism, and handling about a two-shaft HST used as a continuously variable transmission for road vehicles in order to prevent any nonconformity of handling and keep its good performance for the long run.

<WORD MESSAGE>

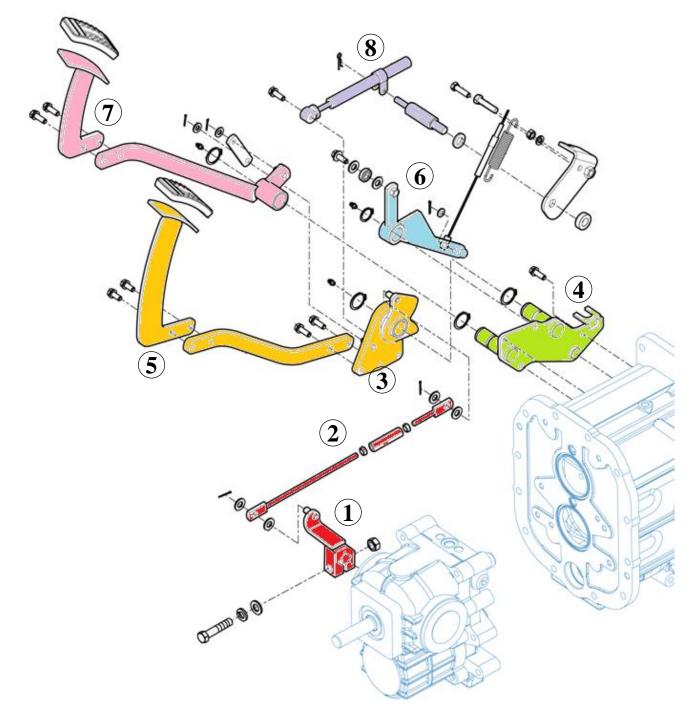
Each Word Message of 'DANGER', 'WARNING', 'CAUTION' in this Manual is defined as follows. It is needless to say that the marking of Word Messages is so important for a safe work and handling of machine/equipment in the field that everyone should understand the messages fully and comply to them.

⚠ DANGER	It marks an imminent danger resulting to death or serious injury if handling wrongly.
⚠ WARNING	It marks an imminent danger resulting to death or serious injury if handling wrongly.
⚠ CAUTION	It marks any possibility resulting to a slight or moderate injury or to physical damage if handling wrongly .

SECTION 2. GENERAL SPECIFICATIONS

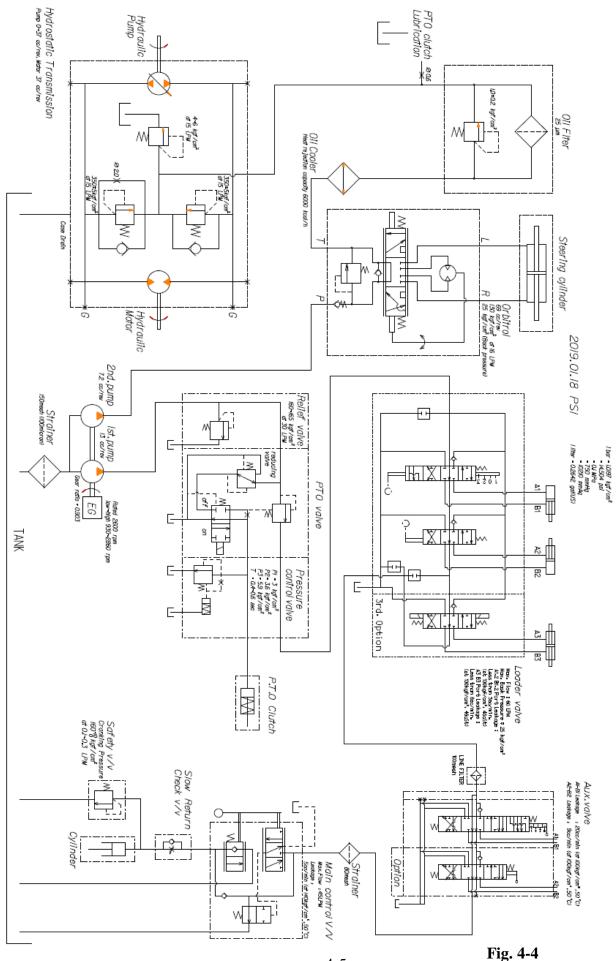

< HST for road Vehicles >

Item		SPECs	
HST Capacity		PUMP	0~37cc/rev
		MOTOR	37cc/rev
PUMP SWASH PLATE ANGLE		0~±18°	
	DIRECTION OF INPUT ROTATION	From the position of clockwise input shaft (Marked with asterisk*)	
SF B	CHARGE RELIEF SET PRESSURE	4.0-6.0Kg/பர் VG46, 50°C, 15L/min	
SPECS DRAIN PRESSURE		Within 1Kg/c㎡	
	FILTER	10 <i>µ</i> m	
	STRAINER	150μm	
	OIL POLLUTION DEGREE	Within NAS 9 Level	
	ENGINE HP	37.4Hp/2400rpm	
	INPUT ROTATION	1000~2600	
CC	PRESSURE DIFFERENCE BETWEEN HIGH AND LOW SIDE	350±5Kg/c㎡ at 15L/min	
andition	CRACKING PRESSURE	Over 320Kg/வீ at 2L/min	
Conditions of Use OF HYDRAULIC OIL		Common Temp.:+10~+80°C Limit:-20~+90°C	
	MAX. VIBRATION	Within 9G	
	DRIVING METLIOD	Input shaft: Direct co	upling
	DRIVING METHOD	Output shaft: Direct coupling	
General Performance	TRUNNION SHAFT OPERATING TORQUE	-1.5≤ T≤ 2.5Kgf.m	Input=2600rpm △50~220Kg/c㎡ Θ=0°~18° VG46,50°C
rp	INPUT/OUTPUT ROTATION RATIO	1±0.03	For no-load


SECTION 3. COMPONENT LOCATION

Hydraulic oil filter Delivery pipe A Drain pipe 2. Suction pipe 3. Gear pump 5. PTO Sol valve 1. Hydraulic Hoses and lines. 6. Delivery pipe B 8. Charge pipe 9. Drain pipe 10. Power steering pipe (LH, RH) 11. HST UNIT (10)9 HST HST 4 Fig.4-1

2. Hydrostatic Transmission


3. Hydrostatic control linkage

- 1. Holder comp
- 5. Forward pedal comp 6.
- 2. Control rod assembly
 - 6. CAM comp
- 3. Forward arm comp.
- mp. 4. HST Pedal Bracket comp.
- 7. Reverse pedal comp
- 8. Damper, oil

Fig. 4-3

4. Hydrostatic system schematic

4-5

SECTION 4. TROUBLESHOOTING

1. Troubleshooting

In case that HST shows troubles, it is as a general rule to replace the Assy. For a more clear-cut explanation and understanding, here is a detailed outline of troubles, causes, checking points, and actions.

TROUBLE	CAUSE	CHECK LIST	ACTION
1. Even when	1. A set value of Low Pressure Relief Valve drops.	Measure the pressure of Charge Circuit and check that it reaches its set value.	Replace with a new component if failing to go up to a specified pressure.
	2. A set value of High Pressure Relief Valve drops.	Measure the pressure of High Pressure Circuit and check that it reaches its specified value.	Replace with a new component if failing to go up to its specified pressure.
	3. The Seat of Check Valve (HST) is defective. (Low/high pressure state of HST is out of normality)	Measure the pressure of Charge Circuit and Low Pressure Circuit, and check that it reaches its specified value.	Replace with a new component if failing to go up to its specified pressure.
turning an operating lever, Output Shaft does not	operating dever, Output 4. Gear Pump gets damaged. Flow rate drops.	Measure the pressure of Charge Circuit and check that it reaches its specified pressure.	Replace with a new component if failing to go up to its specified pressure.
rotate.	5. Air comes into HST.	 Let the air out of HST. Check the flow rate of tank. Check if pipe is out of order (ex: suction of air caused by defective seal). 	- Replenish a hydraulic oil (operating oil) Repair the pipe.
	6. Main parts of HST malfunction because of being damaged. Input/output shaft or coupling shows problem.	Check that output rotation number of HST goes up to its specified value. Check if Spline of Coupling is worn out.	- Replace with a new Coupling Clean the Hydraulic Circuit in Main Body and replace with a new HST ASSY.
2. Even when placing a Pedal in its neutral position, rotation does not stop.	Check Valve malfunctions. (ex: Hole is clogged)	- Measure the pressure of High Pressure Circuit. - Check the conversion state of high and low pressure when moving it backward/forward.	After going through disassembly and washing process, reassemble it.
	2. A Moving Swash Plate is worn out.	Adjust the Pedal slightly from its neutral position and check that there is any point where its output rotation stops.	Replace with a new component if there is no point where its output rotation stops.
	3. An operating torque of Lever increases. The force of Return Spring, at the end of Main Body Link, deteriorates, which makes the return force of Pedal poor.	- Measure an operating torque at the end of Trunnion Shaft Check the force of Return Spring.	Replace with a new Swash Plate Bush. Replace with a new Link Part.

TROUBLE	CAUSE	CHECK LIST	ACTION
3. HST output and rotation are insufficient.	The flow rate of Charge is short because of having Filter or Strainer (Main Body) clogged.	Measure the pressure of Charge Circuit and check that it reaches its specified pressure.	Wash the Filter/Strainer, or replace with a new one.
	2. Air is flowed into HST.	Discharge HST Air, and check the state of tank flow rate. Check if pipe is out of order (ex: Air suction caused by seal defect)	Repair the pipe of supplying a hydraulic oil (operating oil).
	3. The flow rate of Charge is short.	Measure the pressure of Charge Circuit and check that it reaches its specified pressure. If it fails to reach its specified pressure, check if Gear Pump is out of order.	Replace with a new Gear Pump Assy.
	4. A high rate of hydraulic oil runs because of having the vibration part of HST pump or motor worn.	Check that HST Output Rotation goes up to its specified value.	Clean the Hydraulic Circuit in Main Body, and replace with a new HST Assy.
4. HST makes a	1. Air comes into HST.	Check the flow rate of tank.Check if pipe is out of order (ex: Air suction caused by seal defect)	-Let the air out of HST, and supply a hydraulic oil (operating oil) Repair the pipe.
	2. The flow rate of Charge is insufficient because of having Filter/Strainer of Main Body clogged.	Measure the pressure of Charge Circuit and check that it reaches its specified pressure.	Wash the Filter/Strainer, and replace with a new one.
noise	3. Link part of Main Body is loose or worn.	Check that noise decreases when covering the Link part with hands.	Adjust and repair the Link part.
	4. The clearance of Input/Output Shaft and Coupling gets wider.	Check if Input/Output Shaft and Coupling gets loose or worn.	Replace with a new Coupling.
	5. The internal components of HST are defective, worn, or damaged.	Check that output rotation of HST reaches its specified value when jacking up vehicle and idling engine.	Replace with a new HST Assy.
5. Oil flows out of Shaft and Seal Part.	Abnormal rise of oil temperature damages Oil Seal, O-ring, and Gasket, etc.	Check if oil temperature rises over its specified value.	-Repair the pipe if finding no problem in Hydraulic Circuit (Oil Cooler) Replace with a new Seal Component.
	2. Oil outflows because of damage in Oil Seal, O-ring and Gasket (caused by an excessive internal pressure inside the case of HST)	Check if the pressure of pipe rises over its specified value.	Repair the pipe and replace with a new Seal Component if fining any problem in pipe.
6. The return of Pedal is slow, or it is difficult to do it.	Operating torque of HST Lever increases (Hysteresis UP)	Measure the torque at the end of Trunnion Shaft.	Replace with a new Swash Plate and Bush.
	The force of Link Return Spring deteriorates. Free cushion of spring part increases.	Check the state of Return Spring.	Change the Link Part. Adjust the force of Spring.

SECTION 5. DIAGNOSTICS

Test conditions by bench test.

- Operator in seat
- Key switch in RUN position

Test/Check point	Normal	If Not normal
1. Control pedals	Pedal should move freely	Check linkage from pedals to pump

Test conditions:

- Start engine and run at slow idle

Test/Check point	Normal	If Not normal
2. Directional pedals are in neutral position	Machine should not creep forward or backward	Adjust centering of pump control pedals
3. Move forwards or reverse pedal slowly from neutral to maximum travel speed position	Machine should accelerate smoothly forward or backwards.	Check fluid reservoir for proper fluid level. Check hydraulic pipe and connections for leaks. Perform system flow and pressure checks to verify proper operation of charge pump and hydrostatic pump
4. Control pedal in full forward position	Machine should move forward	Check pedals and forward/reverse linkage for damage. Check forward drive pressure relief valve
5. Control pedal in full reverse position	Machine should move backward	Check pedals and forward/reverse linkage for damage. Check reverse drive pressure relief valve.

SECTION 6. THEORY OF OPERATION

HYDROSTATIC SYSTEM

The hydrostatic system provides a means to transfer. Power from the engine to the final drive to the wheels. It also provides infinitely variable speed control, forward or reverse, by foot pedal operation.

1. Operation

* Each operation drawing is a schematic diagram, so there may be slightly differences in real product, size and shape.

1) PUMP, MOTOR CIRCUIT (Variable Pump)

<Figure-1(a)> shows a rotation part of axial piston pump (Swash plate type), with 9 pistons inserted to cylinder block. Shaft is not connected into driving source (ex: Engine or motor). When shaft rotates, so does cylinder block together (Swash plate does not rotate).

If Shaft Center and Swash Plate are connected with each other vertically, as shown in <Figure-1(a)>, Space 'A' and 'B' (Cylindrical space of Cylinder Block) have the same volume so that they do not work suction and discharge, not to mention pumping.

If rotating the Swash Plate askew as much as 'a', as shown in $\langle Figrue-1(b) \rangle$, each volume of Space 'A' and 'B' is changed as shown in the drawing (A>B). In this condition, if rotating the shaft in the direction of φ , oil is sucked between s180° where piston moves from B to A.

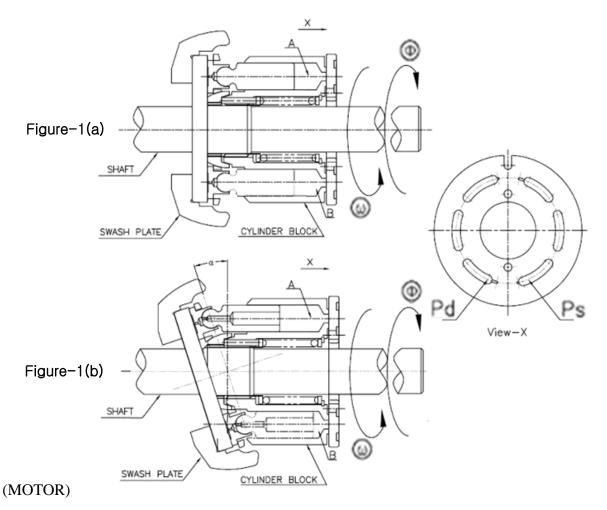
So, if connecting suction and discharge pipe to two crescent ports, as shown in <Figure-1(c)>, it becomes one pump.

In this case, Ps becomes a suction port and Pd becomes a discharge port. On the contrary, if rotating the Shaft towards ω , Ps becomes a discharge port and Pd becomes a suction port.

The next is about discharge capacity. As described above, in case of 'a=0°', there is no suction and discharge. The bigger the volumetric difference between Space 'A' and 'B' is (that is to say, as much as its slant angle), the bigger its flow rate is.

In this case, discharge capacity of pump is calculated as follows:

 $Q = \underline{D \ PMAX \cdot tan \ a \cdot N \ in \cdot \eta \ vp} / tan(a \ Max) = (Cm^3/min)$


D PMAX : Max. Capacity of PUMP(cm³/rev)

a : Swivel Angle of Swash Plate (deg)

a MaX : Max. Inclination Angle of Swash Plate (Swivel angle) (deg)

N in : Pump Input Rotation (rpm)

η vp : Pump Volume Efficiency

<Figure-2> shows a rotation part (Shaft and Cylinder Block) in Axial Piston Pump, and 9 pistons are inserted to Cylinder Block. At the end of Cylinder Block, there is Valve Plate with two crescent passages (Ps and Pd), and the two crescent passages are connected to inlet pipe and discharge pipe, respectively.

In this condition, if having high pressure oil delivered from Ps Port, piston will be pressed and Swash Plate will be affected by Force (F). The force component (Ft) of this Force's rotation direction rotates Cylinder Block, which makes its Spline get in and generates torque in the Shaft towards ε and finally works Motor.

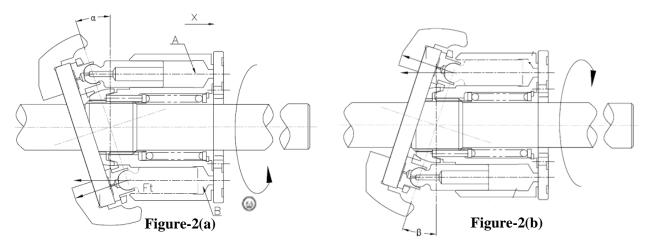
Output torque of Motor is calculated as follows:

$$T = (\underline{P \cdot DM \cdot \eta m}) / (2\pi) = N.m$$

Dм: Motor Capacity (cm³/rev)

P: Working Pressure MPa

ηm: Torque Efficiency


The number of rotation is changed by flow pressure, and it is calculated as follows:

$$N = (\underline{Q.\eta \text{ vm}}) / \underline{DM}$$

Q: Inflow Quantity (CM³/min)

η vm : Motor Volume Efficiency

At this time, hydraulic oil (operating oil) is discharged from Pd Port. Reversely, if drawing pressure oil from Pd Port, it rotates contrary to the above expression.

2) CHARGE CIRCUIT

HST Circuit has an internal gap, so it is equipped with Charge Circuit to compensate the weak point.

Oil discharged from Charge Pump is to be supplied to Pump and Motor through Check Valve. The remaining oil goes inside the Case through low-pressure Relief Valve and cools down Pump and Motor, from which it goes back to Tank.

3) H S T Operation

A variable pump does not work even if rotating the input shaft of HST. Oil is not supplied from pump to motor, and output shaft does not rotate. Two(2) high-pressure passages linking pump and motor are connected to Charge Circuit.

The remaining oil that is supplied to main circuit via Check Valve, discharged from Gear Pump (Charge Pump), flows into the case through low-pressure Relief Valve and comes back to tank.

In case of rotating the input shaft of HST to the right and tilting TRUNNION BAR from its neutral position to the direction of 'a': When the Lever is at a minimum inclination angle, pump does not work and output shaft does not rotate not to make a volumetric difference of inner Cylinder by the taper angle of moving Swash Plate. If tilting the Lever above the taper angle of moving Swash Plate, pump starts to run and supply motor with oil, and output shaft rotates. Output rotation is directed to the right when seeing it from the position of output shaft.

And Relief Valve is usually closed. If the output shaft of motor is overloaded and pressure inside the HST Circuit is over 340kgf/cm³, Relieve Valve works to prevent the damage of each equipment.

In this case, energy is all transformed to heat and oil temperature inside the HST Circuit rises sharply. So, operation of Relief Valve has to last just for as a short time as possible (Within 30 seconds). Oil that has already passed through Relief Valve is flowed into low-pressure circuit.

(c) BACKWARD (TRUNNION BAR :
$$\beta$$
 side)------Figure-2(b)

The operation principle is the same as the above FORWARD operation.

In case of tilting the TRUNNION BAR to the direction of ' β ' and tilting the Lever above the taper angle of moving Swash Plate, pump starts to discharge oil and supply motor with oil, and output shaft rotates. Output rotation is directed to the left when seeing it from the position of output shaft.

4) Handling Precautions

In case of keeping it over one(1) month, a clean hydraulic oil (operating oil) has to be injected to the inner case of HST to prevent any possible corrosion of HST inside, and it has to be kept in a dry and clean place.

4-2 Operating Oil (Hydraulic Oil) **WARNING**

Oil for operating a hydraulic system affects the performance and service of machinery as to what to choose and handle the oil. In general, an operating oil has to be a quality hydraulic oil and it has to be excellent in its lubrication, oil resistance, oxidative stability, and anti-corrosion. And it has to have properties not to give damage to packing and seal. For this HST, an operating oil of ISO VG46 is highly recommended. In case of mixing with other kind of oil, it has to use a new oil.

4-3 Pollution Management **WARNING**

1) HST is to be delivered in a fully washed condition to protect the Main Body of HST. In case of feeding the hydraulic oil (operating oil) into a tank or while using it, you make sure to take a special care not to have any pollution molecules come into the HST. The pollution level of hydraulic oil has to be maintained within NAS9 Level. Pollution molecules of over 100µm can be a main factor that can give a severe damage to the HST for a short time.

- 1) A special carefulness will be taken when taking out HST Input/Output Shaft and Driving M/C Shaft/Core. The stagger (deflection) of core shall be set within 0.05mm.
- 2) When attaching/detaching HST to Main Body, an excessive load shall not be given to the end of Output/Input Shaft.

4-5 Defect of Trunnion Part **WARNING**

- 1) If Trunnion Shaft of HST has an excessive torque beyond its specified value, it is highly likely to be broken. So, Stopper shall be operated less than its maximum inclination angle that HST allows, and a special care is taken not to apply an excessive torque, beyond its specified value, to Trunnion Shaft.
- 2)A special care is needed not to have rain or water drops fall towards the Trunnion Shaft or Oil Seal; otherwise, Trunnion Shaft gets rusted and oil leakage may happen.

4-6 Starting **WARNING**

- 1)Fill a hydraulic oil (operating oil) in HST Case.
- 2) After mounting HST, start to idle the engine, work the pedal of vehicle slowly, and move it forward/backward repeatedly. In this way, air has to be let out of HST.

Failure to let the air out of HST fully results to noise caused by aeration, not by HST. So, you shall continue the above operation procedure until the noise is completely gone.

If there is an excessive inflow or mix of air, Output Shaft of HST may not work its rotation. In this case, place the Lever at its maximum inclination angle from idling rotation of engine temporarily, and it starts to rotate. (In this case, it is safe to jack up a vehicle because a sudden acceleration of vehicle can occur)

3) At first, you shall drive it at a low rotation state. After checking that there is nothing abnormal, such as noise or vibration, you can go up to its specified rotation.

As for hydraulic unit, the most important thing is to how extent a driving temperature is maintained. If it is too high, oxidative resistance of hydraulic oil (operating oil) deteriorates, which leads to the shortening of its service life. On the contrary, if it is too low, its density gets high, which leads to the deterioration of HST's mechanical efficiency. So, users should comply to the following precautions.

1) Starting Temperature

In case that a driving temperature is less than $+10^{\circ}$ C, you turn up a heater over $+10^{\circ}$ C and start to drive the Main Body.

2) Common Driving Temperature

It is optimal to maintain it within $+20^{\circ}\text{C} \sim +60^{\circ}\text{C}$

3) Max. Limit of High Temperature for Driving

Max. limit of driving temperature is 90°C. This max. limit value is determined by the aging effects of hydraulic oil's density, oxidative resistance, O-ring, and Oil Seal, etc. So, driving at over +90°C can deteriorate the service life of HST, not to mention the life of oil.

4-8 Piping **WARNING**

- 1) As for drain pipe of HST, you shall set the size, length and bending of pipe so that internal pressure of HST Case can be less than its value specified in SPECs.
- 2) Be sure to wash the pipe before assembly, and eliminate scales in the pipe safely.
- 3) A special care is needed not to have dirty or foreign materials comes into the pipe from inlets of each HST while laying pipe.

5. Regular Check & Replacement Cycle of Hydraulic Oil

Even at the first washing, there may be sedimentation (ex: sludge) in circuit tank while doing a long drive. It can lead to damage of HST, deterioration of hydraulic oil, and malfunction of it.

To prevent these conditions, it is requisite to perform a regular inspection on hydraulic oil and replace with a new one if necessary. It is difficult to indicate the pollution state or deterioration of oil in a quantitative way, but there is an effective method of judging the state by naked eyes. You should refer to the following visual inspection.

But if fifty(50) hours or more pass after factory shipment, it shall be replaced with a new one upon the earlier of once a year (after starting to use it that year) or 200Hrs.

When replacing with a new hydraulic oil, there is mixture of deteriorated oil, sludge, and water, etc in the tank, which may result in poor performance of HST and shorten its service life. So, it is requisite to flush the internal of machine before making replacement of oil.

X Visual Inspection & Judgment

(Take the sample of oil from HST Case, put it in a test tube, and compare it with a new hydraulic oil)

Appearance	Smell	Condition	Action
Transparent, and no discoloration	Normal (Good)	Good	Usable
Transparent, and small black spots	Normal (Good)	Foreign materials are contained.	Filter out the foreign materials, and use it.
It is discoloring into milk-white color	Normal (Good)	Moisture (water) is contained	Replace with a new oil
It has been discolored into black.	Stink	Oxidized and aged	Replace with a new oil

SECTION 7. TESTS AND ADJUSTMENT

1. HYDROSTATIC PEDAL AND NEUTRAL ADJUSTMENT

Reason:

To ensure that tractor does not move unless the forward or the reverse pedal is depressed.

Procedure:

- 1. Operate the hydrostatic control pedals. They should return by themselves to the neutral position. If pedals do not operate properly, check pedals and linkage for damage or wear.
- 2.Start engine and run at low idle.
- 3.Place range shift lever in LOW gear. Tractor should not move. If tractor moves, note direction and adjust neutral return linkage as follows:

CAUTION

SEVERE INJURY OR DEATH CAN RESULT IF ENGINE IS NOT SHUT OFF WHEN PERFORMING NEUTRAL ADJUSTMENT

- 4. Shut engine OFF, engage the park brake.
- 5.On the right side of the tractor, next to the forward and reverse control pedals, loosen the turnbuckle in the control rod assembly. The turnbuckle must be turned to perform the neutral adjustment.
- 6.Start engine and run at low idle and disengage the park brake.
- 7.If fastening or loosening the turnbuckle, it can be set up to the neutral position.
- 8.Place range shift lever in LOW gear. Tractor should not move. If tractor moves, repeat step 4 through
 - 9 until the movement is eliminated.

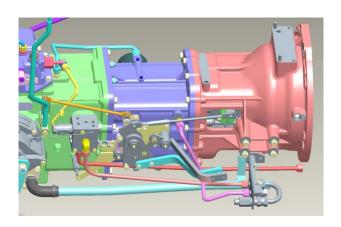
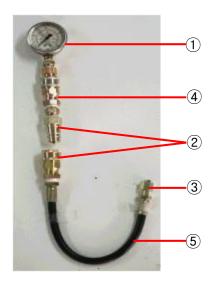


Fig. 4-5

- 1. Holder comp
- 2. Control rod assembly
- 5. Forward pedal comp 6. CAM comp
- - 3. Forward arm comp. 4. HST Pedal Bracket comp.
- 7. Reverse pedal comp 8
 - 8. Damper, oil

2. HYDROSTATIC PUMP PRESSURE TEST

Reason:


To ensure that internal parts of the hydrostatic pump are not worn excessively, and the relief valves are operating properly.

Equipment:

①Gauge spec. : Over 500 kgf/cm² (6,610 psi) ②Coupler spec. : 3/8"(Hose with quick coupler)

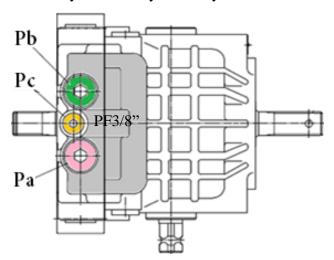
3 Adaptor spec. : PF3/8"

4 Gauge 5 Adaptor

IMPORTANT: Make sure that the hydraulic fluid is visible in sight glass. Insufficient hydraulic fluid could cause system to run dry and damage pump and motor.

IMPORTANT: Do not allow valves to relieve for more than 10 seconds or hydraulic oil may overheat.

Procedure:


- 1.Park tractor on a level surface
- 2. Turn key switch to OFF position.
- 3.Make sure range transmission shift lever is in neutral position.

CAUTION

AVOID SUDDEN TRACTOR MOVEMENT.Tractor could move suddenly causing severe injure or damage to equipment during test procedure. Perform test in open area.keep all personnel away from front or rear of tractor

- 4.Start engine and run until hydraulic oil is warm.
- 5.Stop engine.
- 6.Cycle all controls to relieve any pressure that may be in the hydraulic system

- 7.Locate test ports on hydrostatic transmission inside tunnel opening.
- 8. Remove test port plugs.
- 9.Install 5 adaptor male into each test port.
- 10.Attach ④ gauge and hose assembly as shown each test port adapter.

- 11. Position gauges so they can be read from tractor's side.
- 12.Perform test from tractor's side.

Make sure park brake in engaged and press right and left brake pedals. Place range transmission shift lever in neutral position.

Start engine and run at full throttle.

CAUTION

If brake fail to prevent wheels from turning. STOP TEST IMMEDIATELY.Repair or adjust brakes are necessary before resuming test. (See brake section)

- 13.Slowly depress forward directional pedal and observe gauge. Gauge should slowly rise to approximately 350kgf/cm² and relief valve will open with an audible squealing noise if there is a filter plugging or an insufficient supply of oil. (at the Pb port : Forward)
- 14.Repeat same procedure with reverse pedal. (at the Pa port : Backward)
 Specifications : Pump pressure should reach approximately 350kgf/cm² in either direction and then relieve.

Results:

-If pressure will not reach 350kgf/cm² in either direction, check charge.

Pressure.

(SEE "CHARGE PUMP PRESSURE TEST)

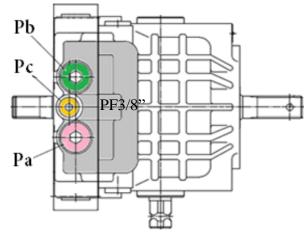
- -If charge pressure is good and hydrostatic pump pressure will not get up to relief pressure hydrostatic pump is worn or damaged.
- -If pressure reaches 250~280kgf/cm² in one direction and not the other, one of the relief valves is defective or the seat is leaking.

3.CHARGE PUMP PRESSURE TEST

Reason:

To ensure that charge pump is operating at specified pressure to supply oil to hydrostatic pump.

Equipment:



Procedure:

- 1.Park tractor on a level surface and set park brake.
- 2. Turn key switch to OFF position.
- 3. Shift transmission to NEUTRAL.

IMPORTANT: Make sure to relieve system pressure before loosening any system lines or hoses.

4. Cycle all controls to relieve any pressure that may be in the hydraulic system.

Note: Be careful not to use plugs on the Top.

It is possible to test the pressure for F and R on the bottom of HST unit.

It is possible to test the pressure for N on the outside pipe.

- 5.Underneath the tractor, at the front of the tunnel, locate the hydrostatic transmission,
 - Remove the plug in the charge pressure test port.
- 6.Assembled test equipment as shown and install to test port.
- 7. Start engine and run at high idle (2400rpm)
- 8. Check pressure reading gauge.

Specifications: at the Pc port

Charge Pressure : 4~6kgf/cm², at neutral position or reverse position with 350 kgf/cm².

Results: Charge pressure should reach 4~6kgf/cm² (57~85psi). Can not be obtained; the mesh inlet filter may be restricted, the suction line may be restricted or leaking air, or front hydraulic pump may be defective.

4. HYDRAULIC SYSTEM BLEED PROCEDURE

Reason:

To remove air trapped in the hydraulic system which will prevent proper operation.

Procedure:

IMPORTANT : If contamination is found in hydraulic system filter or inside reservoir, flush entire hydraulic system.

NOTE: Fill the hydraulic oil filter with new oil before installing.

- 1.Install a new hydraulic oil filter.
- 2. Fill the transaxle with specified and recommended transmission oil to the proper level in sight glass.
- 3. Turn the key to the glow position for 10 seconds to heat the combustion chamber in the engine.
- 4. Turn the key to START. And turn the key to OFF.
- 5. Raise tractor front end and support on suitable stands.
- 6.Start the engine and run at low idle.

IMPORTANT:

If steering fails to respond, or pump pressure is not being delivered to steering control unit (SCU), shut engine off and check to see that steering hoses are connected to the correct SCU ports.

7.Slowly turn the steering wheel left and right until wheels turn smoothly indicating that any trapped air has been bled back to the reservoir.

IMPORTANT:

If rock shaft fails to react to lift control lever movement, shut engine off and check hose clamps on suction tube elbow and manifold to ensure that they are properly tightened.

- 8. Operate rockshaft several times until it operates smoothly.
- 9.Stop the engine and check the hydraulic reservoir oil level. Fill as needed. Check all line connections for leaks; tighten if necessary.
- 10.Lower the tractor to the ground.
- 11. Drive tractor in forward and reverse several times until transmission operates smoothly.

1. HYDROSTATIC SPLITTING.

Prepare the Tractor:

- 1. Park tractor on a level surface.
- Shut off engine.Release hydraulic pressure by operating all controls.
- 3. Remove the transmission assembly from the chassis.
- 4. Detach the HST control rod.
- 5. Remove the hydraulic pipes and related parts

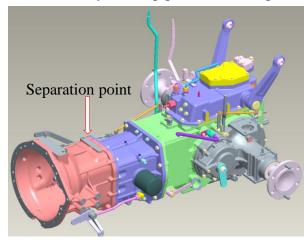


Fig. 4-6

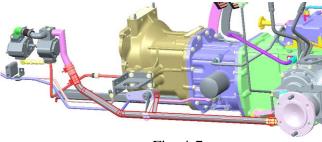


Fig. 4-7

6. Remove the mounting bolts.

Separate between the front and mid transmission.

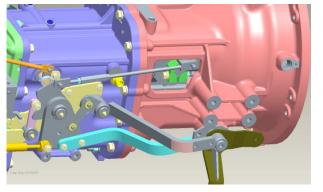


Fig. 4-8

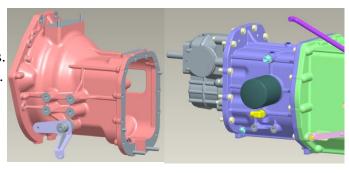


Fig. 4-9

Note: Oil may drain from the HST unit after it is removed.

Have a suitable container ready to catch excess oil.

Note: Be careful not to damage the filter and O-rings and lock pin.

Note: Hydraulic transmission weights approximately 20 Kg.
Attach a suitable lifting device to transmission before removing screws.

Installation:

Install the reverse order of disassembly.

- 1) Clean the surface of front transmission before installing the O-Rings.
- 2) Apply grease or gear oil to O-rings.
- 3) Tighten the screws attaching hydrostatic unit to the mid transmission.

Note: If neutral adjustment locking screws were loosened, neutral adjustment procedure must be performed.

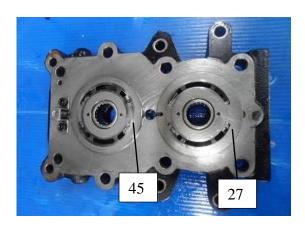
See "HYDROSTATIC PEDAL AND NEUTRAL ADJUSTMENT"

2. HYDROSTATIC OVERHAUL.

1. Tools

No.	Tool Name	Size & Set Value
1	Plastic hammer	Light alloy core 0.3kgf
2	Driver(-)	150mm
3	Snap ring plier (For inner hole)	H-3, H-5
4	Snap ring plier (For shaft)	S-1, S-2, S-3
5	Torque wrench	Torque set value 51.N.m 25.N.m
6 Hexagonal wrench		2-side width 4mm 2-side width 5mm 2-side width 6mm 2-side width 10mm

2. Pre-Disassembly Precautions


- a. Make sure to remove dirt or foreign materials from the outside surface.
 - (Make sure to wash the outside surface fully. When doing this job, it is important to close lids so that dirt or foreign materials cannot comes into each port).
- b. Discharge a hydraulic oil (Operating oil) out of its case.
- c. Keep working site clean and tidy, and be fully careful not to have any dirt or foreign materials come into each part.
- d. Take a special care to prevent any possible falling of parts and puncture damage caused by contact.
- e. For each Part Number stated in Assembly Manual, see the assembly drawing attached at the end.

3. DISASSEMBLY PROCEDURE

29

Process Drawing

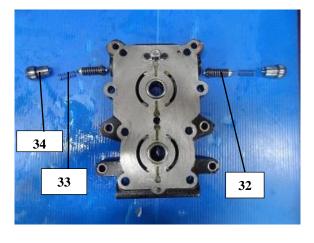
(FRONT COVER ASS'Y)

Description

- 1. Take off FRONT COVER ASS'Y.
- a.Take off WRENCH BOLT [M12x45L] 8pcs (47)
- b.Take off FRONT COVER (ASSY) (29)

- ! Be careful not to drop VALVE PLATE
- ! Be careful not to lift it with CYLINDER BLOCK.

In case that CYLINDER BLOCK is not separated, tap on FRONT COVER lightly with plastic hammer, and it will be separated.


Description

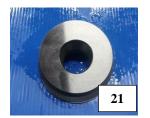
- 2. Disassemble FRONT COVER ASS'Y
- a. Separate VALVE PLATE(27) and (45).

b. Separate PLUG (34)of RELIEF VALVE by L-wrench or Torque wrench.

c. Separate SPRING(33)and RELIEF VALVE ASS'Y(32)

Process Drawing Description d. Take off WRENCH BOLT [M6x10L] 2pcs (40) by L-wrench or Torque wrench. e. Separate SPRING HOLDER(39)and SPRING(38), CHECK(37) **39** 38 3. Take off GASKET(28). 28

Process Drawing Description 4. Take off CYLINDER BLOCK(PUMP) 5. Separate Snap Ring(12) using Pliers. ► SNAP RING(12) and SET PLATE((11), PISTON ASS'Y(10), CYLINDER BLOCK(23) 12


Process Drawing Description

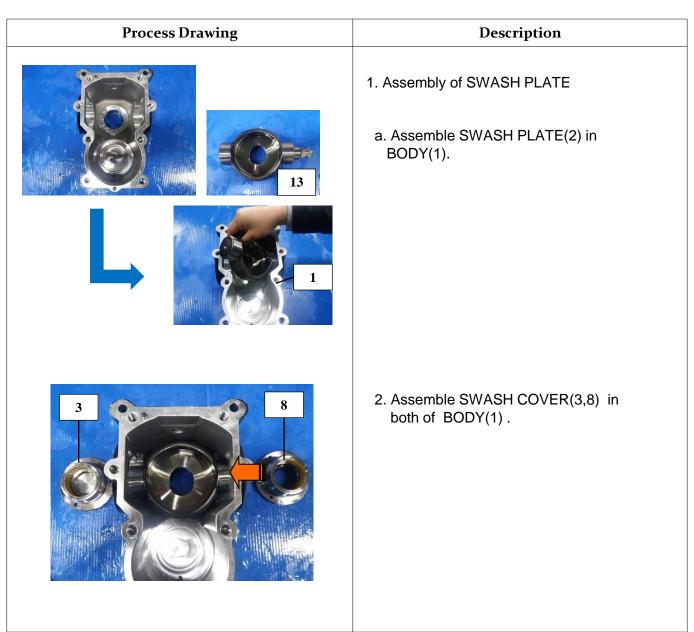
6. Take off CYLINDER BLOCK ASS'Y(MOTOR)

▶ Disassemble SWASH PLATE(21), HOLDER(22),CYLINDER BLOCK(10), SET PLATE(11), PISTON ASS'Y (22), into CYLINDER BLOCK ASS'Y.

Process Drawing 7. Take off SHAFT(17) from BODY(1). 8. Take off SHOE PLATE(9) from SWASH PLATE(PUMP)

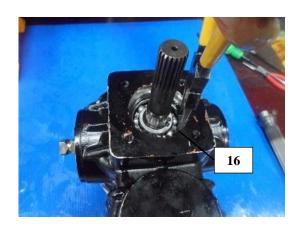
9. Turn the contrary BODY, Separate Snap Ring(16) using Pliers.

Description **Process Drawing** 10. Take off OIL SEAL COVER(54) ASS'Y. 11. Separate Snap Ring(16) using Pliers. 12. Take off SHAFT(13) from BODY(1).


Process Drawing Description 13. Take off FLUSH M/C SCREW [M6x15L] 3pcs (7) by L-wrench or Torque wrench. 14. The other side in the same way, Take off FLUSH M/C SCREW [M6x15L] 3pcs (7) by L-wrench or Torque wrench. 15. Take off SWASH COVER(3,8) Of both.

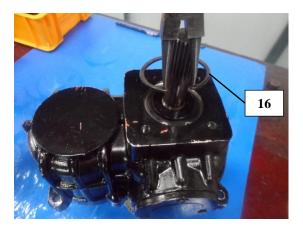
Process Drawing	Description
1 13	16. Take off SWASH PLATE(13) from BODY(1).

4. Pre-Assembly Precautions


- a) Wash each part with a cleaning (washing) oil and dry it with a clean air.
- b)Take a special care in handling each part to prevent stain by dirt or foreign materials, and any possible puncture, traces of holes or any other physical damage.
- c)Replace seals with new ones.
- d)Use a specified fastening torque when tightening each part.
- e)Spread Lithium Grease on oil seal and O-ring beforehand.

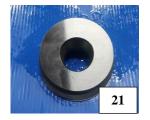
5. Assembly Procedure

Process Drawing Description 3. Assemble FLUSH M/C SCREW [M6x15L] 3pcs (7) by L-wrench or Torque wrench. 4. The other side in the same way, Assemble FLUSH M/C SCREW [M6x15L] 3pcs (7) by L-wrench or Torque wrench. 5. The ball bearing assembly is assembled to the SHAFT(13) in the body(1).


Description

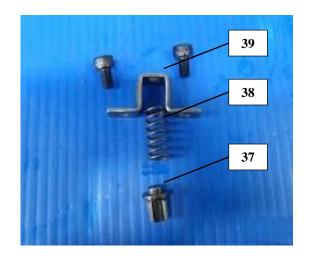
6. Assemble Snap Ring(16) using Pliers.

7. Assemble OIL SEAL COVER(54) ASS'Y.

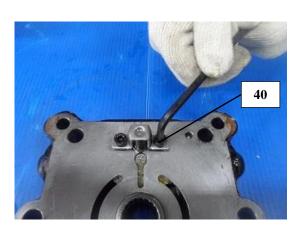

8. Assemble Snap Ring(16) using Pliers.

Process Drawing Description 9. Turn the contrary BODY, Assemble SHOE PLATE(9) in SWASH PLATE(PUMP) 10. The ball bearing assembly is assembled to the SHAFT(17) in the body(1).

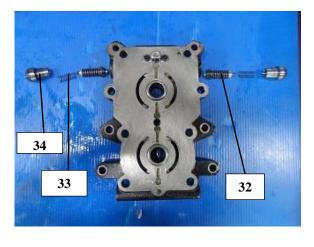
▶ Assemble SWASH PLATE(21), HOLDER(22), CYLINDER BLOCK(10), SET PLATE(11), PISTON ASS'Y (22), in turn.


11. After assemble CYLINDER BLOCK ASS'Y.

Assemble CYLINDER BLOCK ASS'Y in BODY.


Process Drawing	Description
10	11. Assemble the PISTON ASS'Y(10) on SET PLATE(11).
	12. After assemble the PISTON ASS'Y(10) + SET PLATE(11) in SWASH PLATE. Assemble Snap Ring(12) using Pliers.
23	13. Assemble CYLINDER BLOCK(PUMP).

Description **Process Drawing** 14. Assemble GASKET(28). 15. Assemble NEEDLE BEARING(30) 2pcs on FRONT COVER.



16. Assemble CHECK(37), SPRING(38), SPRING HOLDER(39) on FRONT COVER.



17. Assemble WRENCH BOLT [M6x10L] 2pcs (40) by L-wrench or Torque wrench.

18. Assemble RELIEF ASS'Y(32), SPRING(33), PLUG(34) on FRONT COVER.

19. Assemble PLUG (34) of RELIEF VALVE by L-wrench or Torque wrench.

20. Assemble VALVE PLATE(27) and (45).

21. Assemble FRONT COVER ASS'Y(29).

21.Assemble FRONT COVER(29) into BODY(1) and then tighten the Wrench Bolt[M12x45L] 8pcs (47) using torque wrench.

► Assembled Products

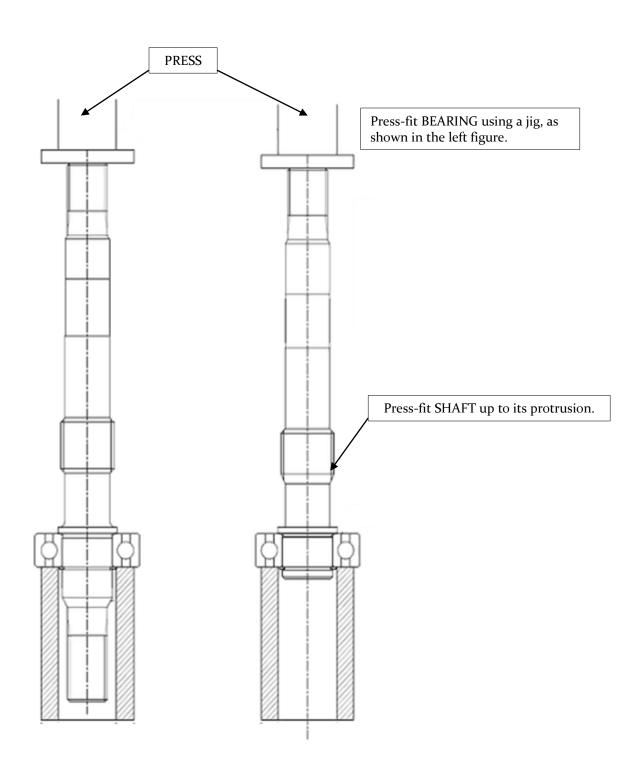
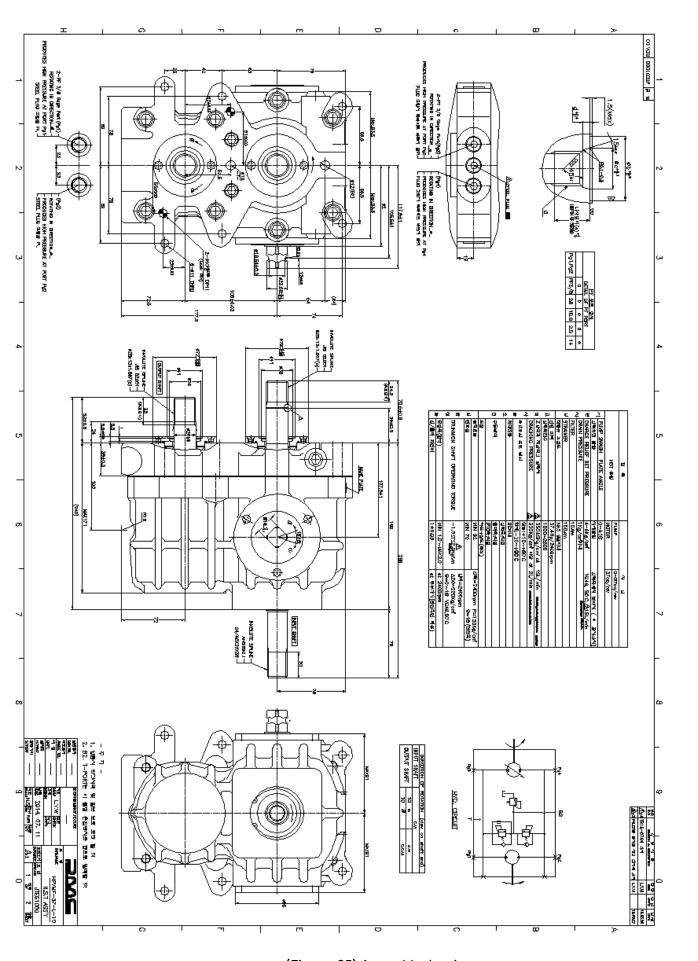



Figure-30. Press-Fitting of SHAFT BEARING

(Figure-35) Assembly drawing

SECTION 1.GENERAL DESCRIPTION	5-1
1.Wheel driving system	5-1
2.PTO drive system	5-1
3.Power train diagrams	5-1
SECTION 2. SPECIFICATIONS	5-2
1. Wheel drive system	5-2
2. PTO drive system	5-2
SECTION 3.DISASSEMBLY,INSPECTION,AND REASSEMBLY	5-3
1. HST system and change gear(front transmission)	-
2.Mid transmission	5-6
1) Separation between the mid transmission and rear transmission-	•
2) PTO clutch	5-8
3) HST reassembly 5	
3.Rear transmission 5	5-13
4.Shifter and related parts 5	5-22
5. Precautions for disassembly, inspection and assembly 5	5-26
SECTION 4.TROUBLE SHOOTING5	5-27
1. Wheel drive system5	5-27
2. PTO drive system 5	5-28

Chapter 5 . Transmission

SECTION 1.GENERAL DESCRIPTION

1. WHEEL DRIVE SYSTEM

The wheel driving system is composed of the following major components:

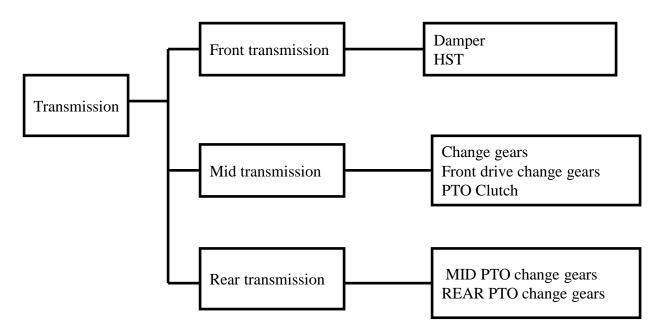


Fig.5-1 Wheel drive system

- 1) The standard transmission produces the hydraulic static transmission and 3 speeds forward and reverse by Forward/Reverse control pedal and sub-change gears.
- 2) All of shifting system have the HST unit and sub-change gears with constant-mesh and sliding-mesh. Therefore, between these stages, gear shifting must be surely stopped traveling.

2. PTO DRIVE SYSTEM

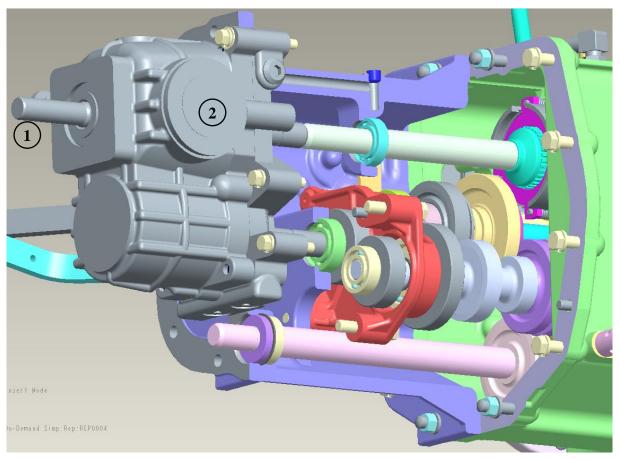
- (1) PTO drive system is composed of the hydraulic clutch and the PTO change gears.
- (2) PTO drive system is composed of MID PTO and REAR PTO, which is referred POWER TRAIN DIAGRAMS.

3. POWER TRAIN DIAGRAMS

Refer to the end page at the end of this chapter.

SECTION 2. SPECIFICATIONS

1. WHEEL DRIVE SYSTEM


T475HST			
Speed shift range		Engine rated rpm: 2,600 rpm	
	Main speed shift	HST	
Reduction	Speed range shift	L(Low)	0.453 (22/21*16/37)
		M(Mid)	0.867 (22/21*24/29)
ratio		H(High)	1.624 (22/21*31/20)
	Drive pinion-Wheel gear	•	0.032 (9/52*10/54)
Operation	Main speed shift		Pedal - RH
methods	Speed range shift		Side shift - LH
Oil capacity	Transmission case	Recommended Oil	Mahindra hyd. oil
		Capacity	32 ℓ

2) PTO DRIVE SYSTEM

MODEL		T475HST	
TYPE		INDEPENDANT	
CLUTCH		Multiple Wet Disk	
	Speed shift range	1	
Rear PTO	Reduction ratio	0.226 (12/53)	
	PTO shaft speed	540 @ Engine 2,385rpm	
	PTO shaft size	Φ35 mm, 6 straight splines	
	Rotation direction	CW viewed from the rear	
PTO clutch	Туре	Wet, multi-disc, hydraulic-operated clutch	
	Number of clutch plates	5	
	Used oil	Mahindra hyd. oil	

SECTION 3. DISASSEMBLY, INSPECTION, AND REASSEMBLY

1.HST system and change gears (Front transmission).

1. Input shaft From engine

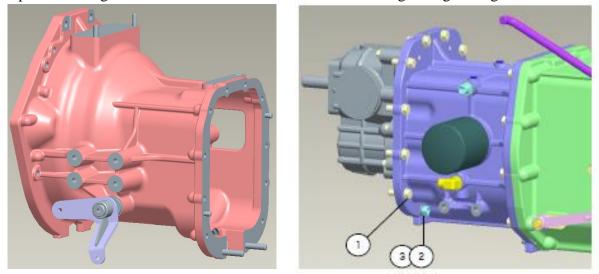
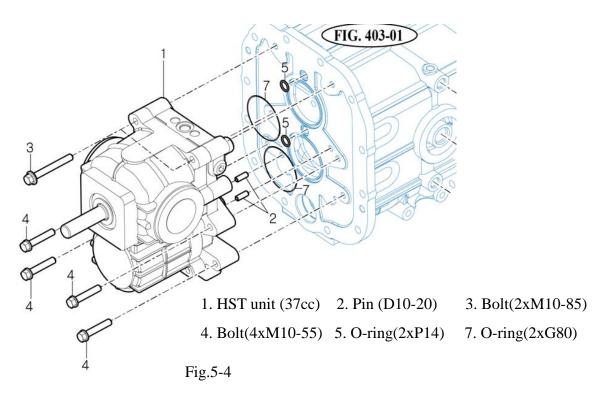

2. HST unit

Fig.5-2

1.1 Disassembly.

(1) Removal of HST system and related parts.

Separate the engine from the front transmission after removing the tightening bolts and nuts.



1. Bolts (10xM12-40) 2. Nuts (2xM12) 3. Washer (2xM12)

Fig.5-3

(2) Remove the HST unit after removing the tightening bolts.

Note: Be careful not to damage O-rings.

1-2. REASSEMBLY

Reassemble them in reverse order of disassembly in accordance with the following instruction.

- Installation of clutch damper and related parts.
 - (1) When installing the clutch damper on the flywheel, be sure to install the cotter pin to flywheel.
 - (2) Apply a thin coat of molybdenum disulfide-based grease(Three bond TB1901 or equivalent) to revolving or sliding parts prior to reassembly.
 - (3) When installing the clutch damper on the flywheel, take care not to damage this clutch damper.
 - (4) Apply an ANTI RUST 720S or equivalent after installing clutch damper in order to prevent from rust.

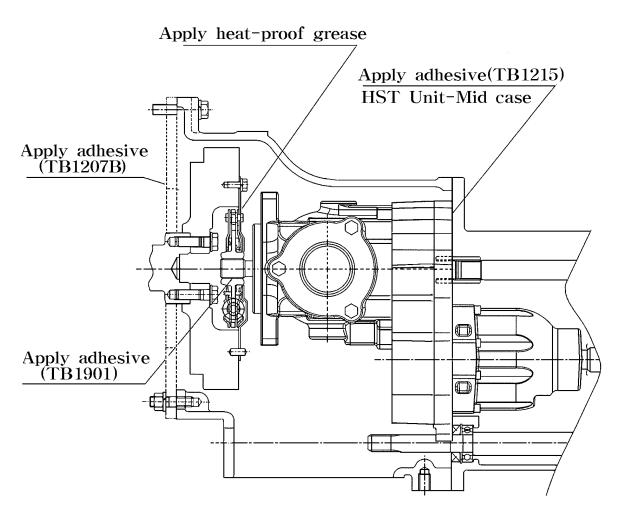


Fig.5-5

2. MID TRANSMISSION

- 1) Separation between the mid transmission and rear transmission.
- (1) Remove the mounting bolts.

 Separate the mid transmission from the rear transmission.

54

1. Pin(D10-22) 2. Stud bolts(4xM12-40) 3. Bolts(8xM12x40) 4. Washer(4xM12) 5. Nuts(4xM12)

Fig.5-6

(2) Remove the PTO input shaft and the bearings.

Pull out the PTO clutch assembly and shaft.

Remove the bearing metal and the input gears.

- 1. SHAFT ,PTO INPUT
- 2. BEARING, BALL6005
- 3. WASHER, 15.2X21X2
- 4. BEARING, NEEDLE141813
- 5. GEAR, INPUT 22T
- 6. BEARING, BALL6205
- 7. COUPLING
- 8. METAL, BEARING

FIG. 411-001

- 5. BEARING, ALL6204
- 6. COLLAR , 40X46X08
- 19. C-RING, HOLE Ø47

(3) Remove the 4WD Drive Gear and shaft. Remove the Sub change gears and shaft. Remove the Pinion gears

Note: Be careful not to damage the needle bearing and shims.

Pinion Gear

1.C-RING, SHAFTØ20 2. WASHER, 20X30X1.0 3. BEARING, BALL/6304HL1

4. WASHER, 20X34X3 5. GEAR COMP, HELICAL 20T

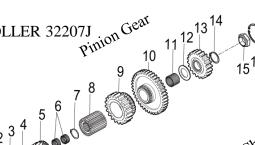
6. BEARING, NEEDLE CAGED KT222613 7. C-RING, SHAFTØ28

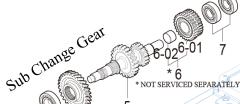
8. HUB , 28X51X59 9. GEAR , SPUR 29T 10. GEAR , SPUR 37T

11. BEARING, NEEDLE CAGED KT283327 12. WASHER, 28X46X3

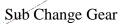
13. GEAR, SPUR 25T 14. C-RING, SHAFT Ø30

15. NUT, M33X1.5 16. C-RING, HOLE Ø72


17. SHIM, P/3.0 D=73 18. SHIM, P/0.1


19. BEARING, TAPER-ROLLER30207J

20. SPACER, BEARING


21. BEARING, TAPER-ROLLER 32207J

23. SHIM, P/0.2 T=0.2

AWD Drive Gear

1. PIN, PARALLEL/A10X22

 $2. \, BOLT$, HEXM12X60

 $3.\ BEARING$, BALL 6306

4. GEAR , HELICAL 31T

5. GEAR , 24-16T

6. GEAR, SPUR 29-28T ASSY

6-1. GEAR, SPUR 29-28T

6-2. BUSH, 30X32X21

7. BEARING , BALL6305

8. WASHER, SPRINGM12

9. C-RING, SJAFT30

10. GEAR, SPUR 21T

11. BEARING, BALL6204

4WD Drive Gear

1. SEAL, OIL/D25478

2. C-RING , HOLE 47

3. BEARING, BALL6005

4. SHAFT, 4WD DRIVE

5. BALL, STEEL 5/16

6. 4WD GEAR, SPUR 28T

7. C-RING, SHAFT Ø28

8. BEARING, BALL6204

9. SPRING, SHIFTER

2) PTO CLUTCH

(2-1) DISASSEMBLY

- 1. GEAR, HUB PTO
- 2. BEARING, BALL6005
- 3. CLUTCH ASSY, PTO CLUTCH
- 4. SHAFT, PTO CLUTCH
- 5. BEARING, BALL6204
- 6. COLLAR, 40X46X08
- 7. C-RING, HOLE Ø95
- 8. PLATE ASSY
- 9. SPRING
- 10. CLUTCH, PLATE
- 11. CLUTCH, DISK
- 12. PLATE, RETURN
- 13. DISC
- 14. SEAL, C
- 15. PISTON
- 16. RING, PISTON
- 17. CASE
- 18. SEAL, B
- 19. C-RING, HOLE Ø47

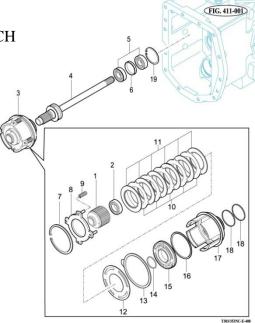
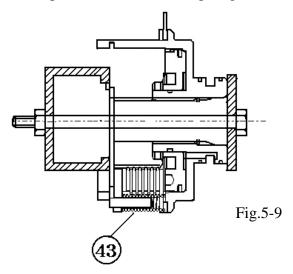



Fig.5-8

Note:

Disassembly of the PTO clutch assembly should be done in a clean, dust-free place. Exercise special attention to avoid damage of the seal rings, etc

- a. Pull out PTO drive shaft forwards.
- b. Pull out PTO drive bearing forwards.
- c. Remove snap ring (D95 for hole), and take bake-up plate, disc assembly, and driving plates.
- d. While holding return spring(43) compressed with a special tool, remove snap ring.


e. Disassemble into separate parts; piston, return sparing, brake disc, and cover assembly.

(2.2) INSPECTION

- a. Cover assembly
- -Replace a cover assembly which has a damaged or worn sliding surface.
- -If there is any damage to the cover assembly and the piston seal ring, these parts should also be replaced.
- b. Disc assembly
- If the thickness of a disc assembly exceeds the usable limit mentioned below or combined width of the disc assembly and driven plate is less than 23.8mm(0.937 in), replace both the disc assembly and driven plate.

-Inspection for disc thickness and serration wear.

Inspection Items	Specified values	Usable limit
Disc thickness	2.2±0.1mm (0.087 in)	1.9mm (0.075 in)
Surface flatness	-	0.2mm (0.008 in)

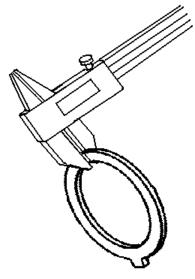


Fig.5-11

e. If the combined thickness of the return plate and brake disc deviates from the specified value, replace both parts.

Inspection Items	Specified values	Usable limit
Combined thickness of return plate and brake disc	5.5 ±0.18 (0.217 in)	5mm (0.2 in)

Fig.5-10

- c. Driven plate
- -Inspection for deformation and burning.
- -A seriously damaged or worn disc should be replaced.

Inspection Items	Specified values	Usable limit
Surface flatness	-	0.2mm
		(0.008 in)

- d. Brake disc
- -Inspection for deformation and burning.
- -A seriously damaged or worn disc should be replaced.

Inspection Items	Specified values	Usable limit
Disc thickness	3±0.1mm (0.118 in)	2.5 mm (0.098 in)
Surface flatness	-	0.2mm (0.008 in)

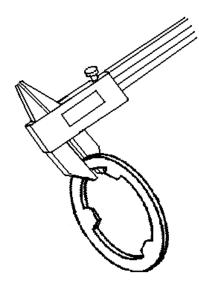


Fig.5-12

f. Also inspect other parts for wear and deformation and replace them if necessary

Note:

Seal ring and the two seal rings should be replaced as a pair

(2-3) REASSEMBLY

Reassemble the parts in reverse order of disassembly, following these instructions.

Note:

- -Each parts should be washed clean before reassembly.
- -Apply multi-purpose, quality grease to needle bearings in advance.
- -Each bolt and nut should be tightened to the respective specified torque table.
- -Every time a gear is installed, its smooth rotation should be checked.
- -Every snap ring should be seated securely in its groove.
- a. When installing seal rings, apply fresh oil ahead of time and install them carefully so as not to damage them.
- b. Install the return plate with the press-processed side turn towards the brake disc.

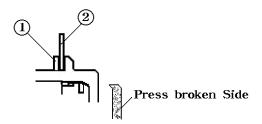
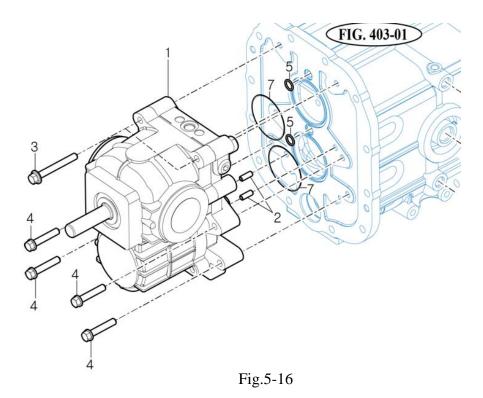



Fig.5-14

① Return plate ②Brake Disc

- c. When installing the return spring, use a special tool; the snap ring should be securely seated in the groove.
- d. Install washer in correct direction.
- e. After reassembly, check to see that gear turns smoothly by locking the PTO clutch.

3) HST REASSEMBLY

Reassemble them in reverse order of disassembly in accordance with the following instruction.

- Installation of clutch damper and related parts.
 - (1) When installing the clutch damper on the flywheel ,be sure to install the cotter pin to flywheel.
 - (2) Apply a thin coat of molybdenum disulfide-based grease(Three bond TB1901 or equivalent) to revolving or sliding parts prior to reassembly.
 - (3) When installing the clutch damper on the flywheel, take care not to damage this clutch damper.
 - (4) Apply an ANTI RUST 720S or equivalent after installing clutch damper in order to prevent from rust.

(3-1). Forward and reverse

- 1) HST holder comp
- (1) When reassembling holder comp, take care directions.
- (2) After installing holder comp, be sure not to skip the parts.

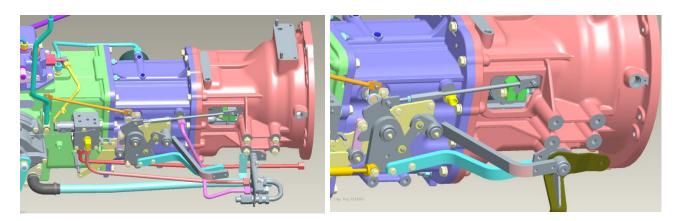


Fig.5-17 HST holder comp and Rod assembly

3. Rear transmission case

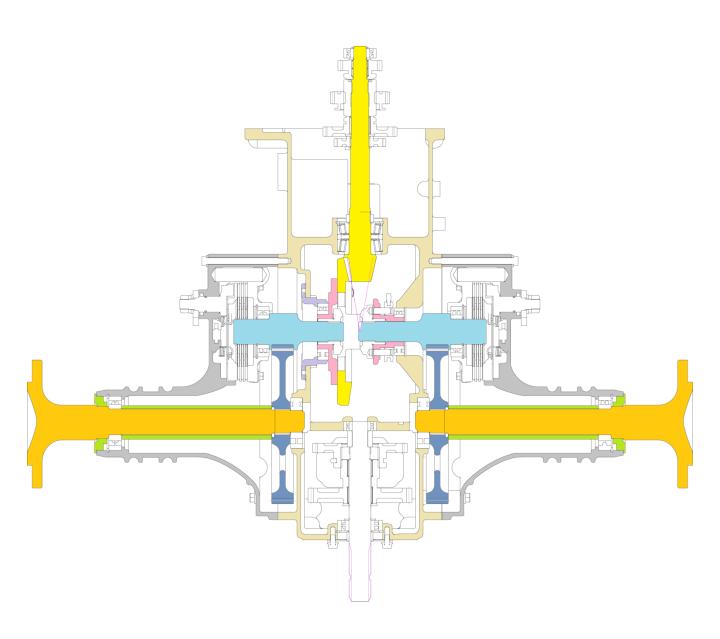


Fig.5-23

3-1. DISASSEMBLY

Separate the spacer transmission and the rear transmission from each other and then remove the hydraulic cylinder case.

(1) Ring gear, Drive pinion, and related parts.

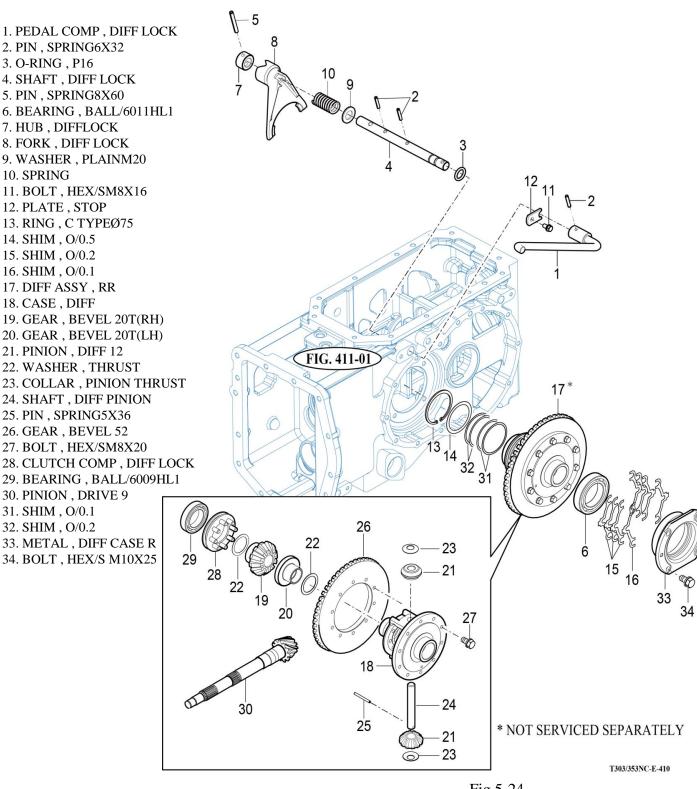
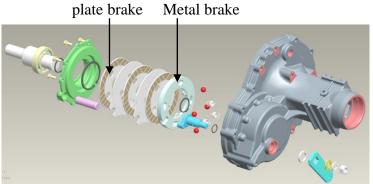
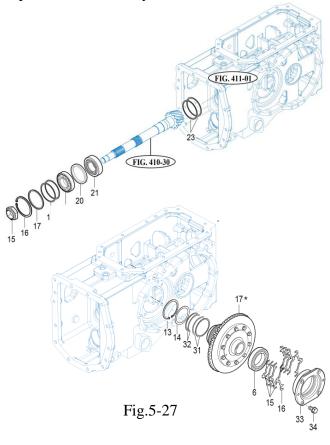
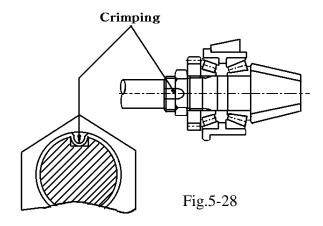


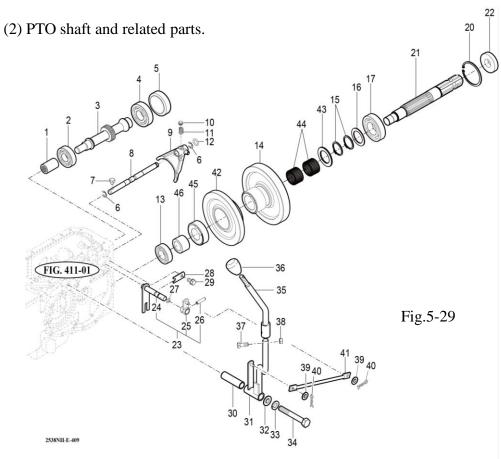
Fig.5-24

b. Disconnect Case Brake LH and Case Brake RH by loosening bolts as shown in Fig.


Fig. 5-26

- c. Remove metal brake and plate brake as a set
- d. Remove the ring gear(17) as a set.
- e. When disassembling the ring gear set further, remove the diff-metal.


- f. Pull out diff pinion shaft(24) and take out difpinions(21) and dif-side gears(19).
- g. Remove the pinion metal(support) tightening bolts and take put drive pinion and related parts as an assembly. The number of installed

h. Release the lock of nut and remove the nut

- i. Push out drive pinion from the rear transmission.
- j.Remove the bearing from the drive pinion with a special tool.

- a.Remove the rear hitch and the trailer hitch.
- b.Extract PTO shaft stay(8) rearwards and take out shifter(8).
- c.Be alert to the steel ball which may spring out of the shifter. Extract PTO shaft(21) rearwards and remove the change gears and related parts.

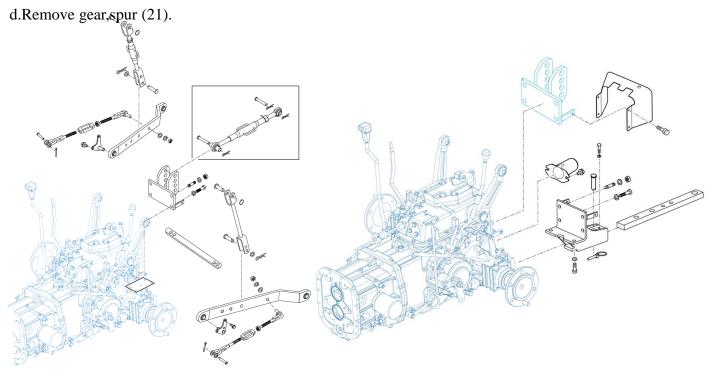


Fig.5-30 Rear hitch and trailer hitch

3-2. INSPECTION

Before and after disassembly, inspect each part for the items mentioned below. Parts which deviate from the specified values should be replaced.

- -Wash clean all disassembled parts and check them for wear, damage, deformation, Burning ,etc. Defective parts should be corrected or replaced.
- -As the drive pinion and the ring gear make a pair, they should be replaced together even if only one is found to be defective.
- -Backlash between the drive pinion and the ring gear

Backlash	0.1-0.2 mm
	(0.004-0.008 in)

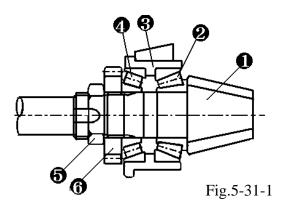
-Backlash between the diff-pinion and the dif-side gear.

Backlash	0.1-0.2 mm
	(0.004-0.008 in)

- -When the backlash exceeds 0.5mm, also inspect the thrust collar for wear, defective collars should be replaced.
- -Disengaging the resistance of PTO shifters.

Standard Value	18-22Kgf (40-49lbs)
Usable limit	17 Kgf (38 lbs)

* Measured at the shifter


3-3. REASSEMBLY

Reassemble the parts in reverse order of disassembly, following these instructions.

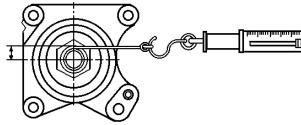
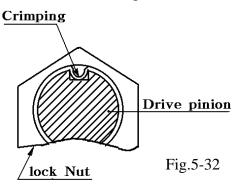
(1) Ring gear, Drive pinion, and related parts.

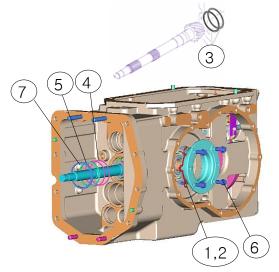
a. Apply oil to the drive pinion and related parts ahead of time. Then install them and tighten the assembly to the specified torque.

Tightening torque	1.4Kgf.m (9.36 ft.lbs)

- (1) Drive pinion
- (2) Tapered roller bearing
- (3) Drive pinion metal
- (4) Tapered roller bearing
- (5) Nut (M33X1.5)
- (6) Gear
- b.Be sure that the starting torque of the drive pinion meets the specified level.

Starting torque 8-11 Kgf.m


Fig.5-31-2

c.After the starting torque has been adjusted to the specified level,crimp the lock of the nut at one point as illustrated.

d. Tighten the drive pinion metal(support) by providing it with the same shimming thickness that it had when it was disassembled.

When the drive pinion or the ring gear has been replaced, the proper number of shims to be installed should be determined based upon the following procedure:

- 1. Shim (2x0.1t) 2. Shim (2x0.2t) 3. Shim (2x0.2t)
- 4. Shim (2x0.1t) 5. Shim (3.0t) 6. Bolt(4xM10-25)
- 7. C-Ring (72)

Note:

Fig.5-33

When assembling without replacing the pinion gear and ring gear with new ones, provide the same shimming thickness as that provided before disassembly.

e. Install the differential gears.

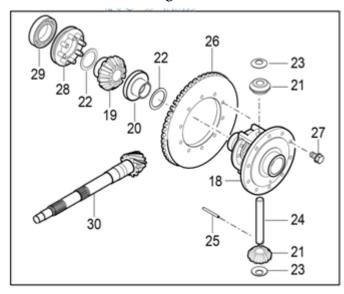


Fig.5-34

Ring gear tightening	9.0-11 Kgf.m
torque	(39.8-69 ft.lbs)

Note:

- Apply multi-purpose, quality grease to the parts mentioned below:
- Tooth surfaces of dif-pinions and dif-side gears
- Friction surfaces of dif-pinion shafts and dif-pinions.
- f.Backlash between dif-pinion and dif-side gear should be within as range of 0.1 to 0.2mm(0.004-0.008 in) and these parts should turn smoothly.

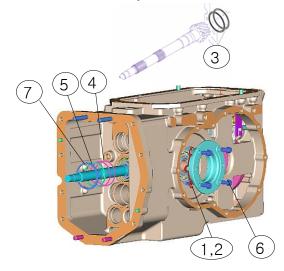


Fig.5-35

g. Install the differential gear assembly.

Diff-case metal	5.5-7 Kgf.m
tightening torque.	(39.8-69 ft.lbs)

Note:

When reassembling the used pinion and ring gear, reinstall the same thickness of shims as was installed before disassembly in each shimming position.

h.Backlash adjustment between the drive pinion and the ring pair(Fig5-35)

i.As the drive pinion and the ring gear make a pair, be sure not to mate them with other parts from differential tractors.

iiAdjust the shimming to backlash of 0.1-0.2 mm (0.004-0.008 in). The standard shimming is 0.4mm (0.016 in) on both sides.

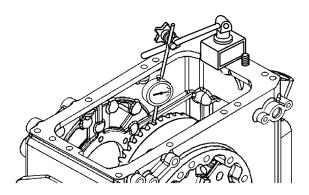


Fig.5-36

Note:

Strike the circumference of the ring gear both sides with a copper hammer by turning the ring gear manually, and check to see that the backlash remains unchanged. The backlash should be checked at four points 90 degrees apart to each other.

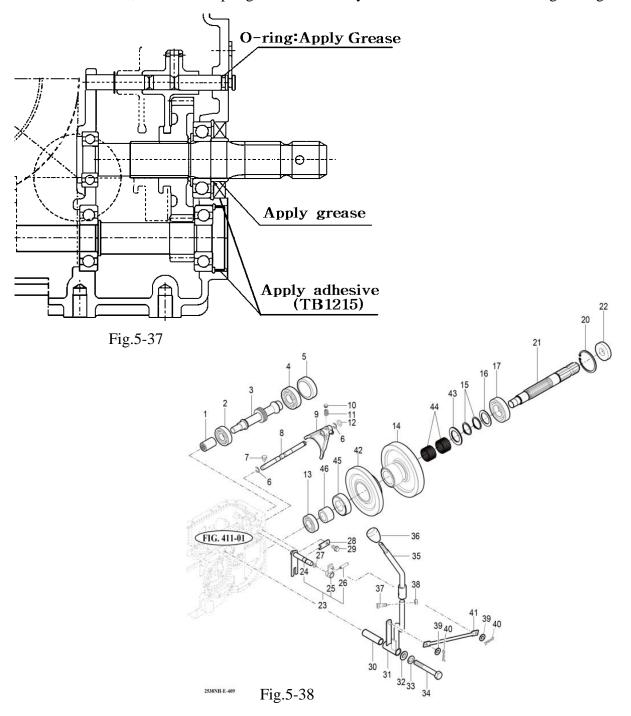
iii.inspection of the tooth bearing

Apply an even coat of oil-dissolved minium on the drive pinion teeth and turn the drive pinion on the ring gear to check the tooth bearing by observing the bearing traces on the ring gear.

Correct Contac	numum numum	When drive pinion and ring gear are meshed correctly with each other and their backlash is within specified range, contact is in middle of ring gear tooth and is approximately 75% of total tooth width.
Tip contact	THE	Excessive backlash. Move differential case and shims from right side to left side. See" Assembly and installation".
Root contact		Inadequate backlash.Move differential case shims from left side to right side.See"Assembly and installation".
Toe contact		Too little engagement.Remove some drive pinion support shims.See Transmission:REAR TRANSMISSION ASSEMBLY-Setting cone center.
Heel contact		Too much engagement.Add some drive pinion support shims.See TRANSMISSION:"REAR TRANSMISSION ASSEMBLY-Setting cone center."

INSTALLATION OF A NEW PAIR OR RING GEAR AND DRIVE PINION

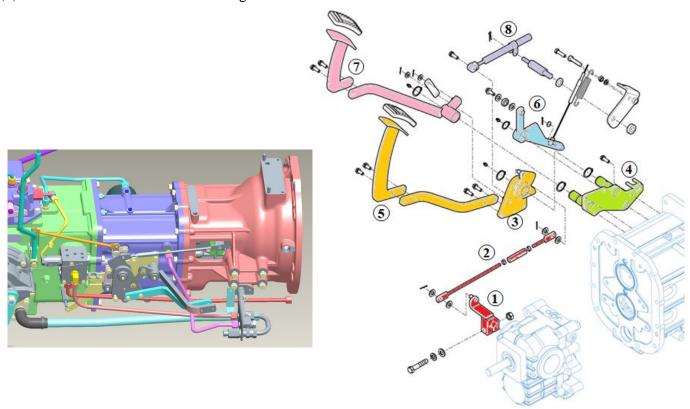
1.use a new pair of ring gear and drive pinion delivered from the manufacturer. Never mix its components with those of other pairs.


Note:

Every ring gear-dive pinion pairs is adjusted and inspected for tooth contact individually at factory.

2.Adjust the backlash between the ring gear and drive pinion to be 0.1-0.2mm(0.004-0.008 in) by shimming the drive pinion metal and right and left dif-case metal and make sure that their tooth contact is proper

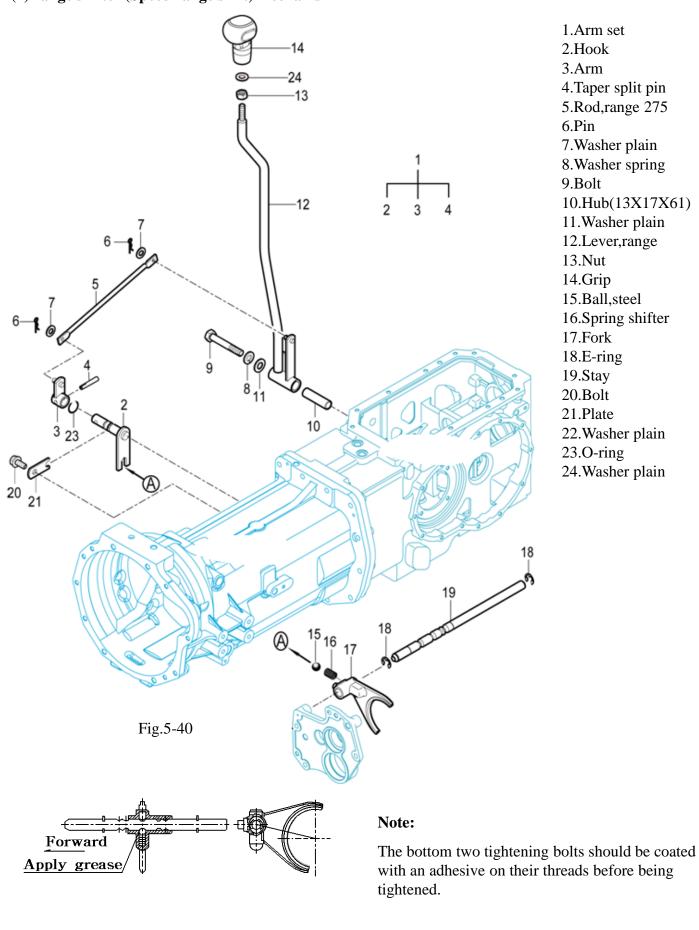
(2) PTO shaft and related parts.


- a. Pushing the PTO counter gear end into the bearing until the stop on the gear is securely seated against the bearing. The seal should be coated with an adhesive (THREE BOND TB1215) on the circumference before installing.
- b.Install the oil seal on the PTO shaft, paying attention to its installed direction.
- c.After installation, the slide coupling should smoothly slide and mesh with the designated gears.

4. SHIFTERS AND RELATED PARTS.

4.1. CONSTRUCTION

(1) Forward and reverse control linkage mechanism.


1. Holder comp

5. Forward pedal comp

- 2. Control rod assembly
- 6. CAM comp
- 3. Forward arm comp.
- np. 4. HST Pedal Bracket comp.
- 7. Reverse pedal comp 8. Damper, oil

Fig.5-39

(2) range shifter (Speed range shift) mechanism

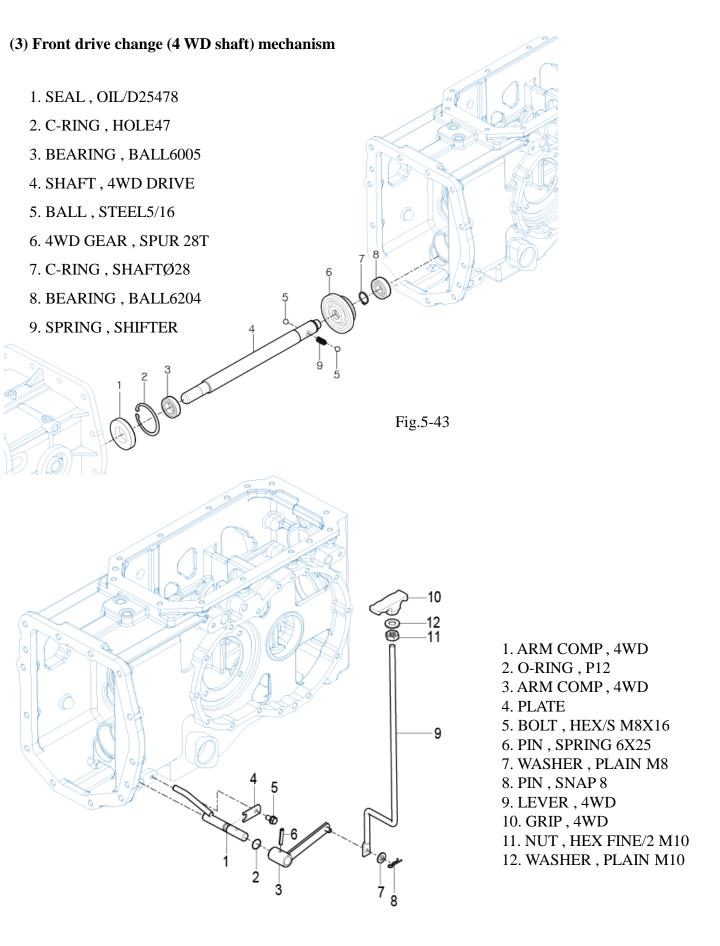
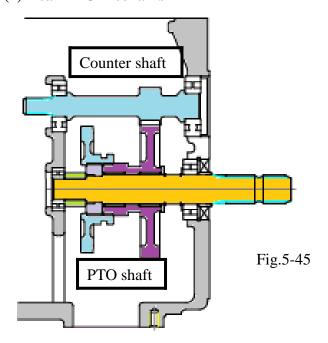



Fig.5-44

(4) Rear PTO mechanism

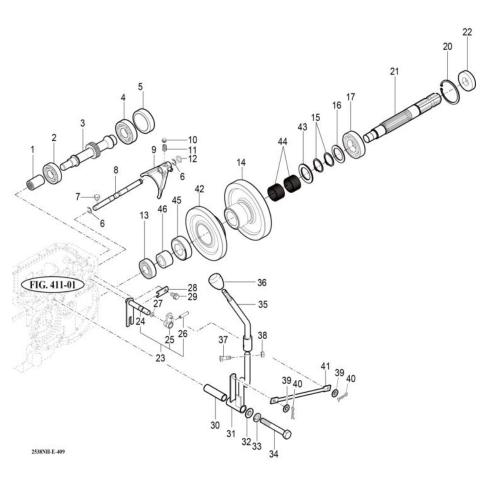


Fig.5-46

- 1. COUPLING
- 2. BEARING, BALL6305
- 3. GEAR, SPUR PTO 12T
- 4. BEARING, BALL6306
- 5. CAP, 72
- 6. E-RINGØ10
- 7. BOLT, SET M8X16
- 8. STAY, PTO SHIFT
- 9. FORK, PTO
- 10. BALL, STEEL5/16
- 11. SPRING, SHIFTER
- 12. O-RING, P10
- 13. BEARING, BALL 6205
- 14. GEAR ,SPUR PTO 53T
- 15. C-RING, SHAFTØ35
- 16. COLLAR , 35X50X2
- 17. BEARING , BALL6207
- 20. C-RING, HOLEØ72
- 21. SHAFT, PTO
- 22. SEAL ASSY, OIL
- 23. HOOK SET, RR PTO
- 24. HOOK COMP, RR PTO
- 24. HOOK COMI , KK I TO
- 25. ARM COMP, RANGE 26. PIN, SPRING6X25
- 27. O-RING, P12
- 28. PLATE
- 29. BOLT, HEX/SM8X16
- 30. HUB(13X17X61)
- 31. LEVER COMP, PTO/DOWN
- 32. WASHER, PLAIN
- 33. WASHER, SPRINGM12
- 34. BOLT, HEXM12X85
- 35. LEVER COMP, PTO(UP)
- 36. GRIP, LEVER 12
- 37. BOLT , HEXM8X35
- 38. NUT, HEX/2 M8
- 39. WASHER, PLAIN
- 40. PIN, SNAP8
- 41. ROD, 236
- 42. GEAR, SPUR 41T
- 43. WASHER, 35X55X3
- 44. BEARING, NEEDLE
- 45. HUB, 35X62X20
- 46. WASHER, 25X40X26

5. PRECAUTIONS FOR DISASSEMBLY, INSPECTION AND ASSEMBLY

(1) Disassembly

When drawing a shifter stay from its shifter, be careful not to lose the steel ball. It can jump out of the shifter.

(2) Inspection

-Shifter -disengaging load:

Sub change:18-22 Kgf (40-49lbs) 4WD change:25-29 kgf (55-64 lbs)

-Usable limit of shifter-disengaging load:

Main change & Sub-change:17 Kgf (38lbs)

4WD change: 24Kgf(53lbs)

-Wearing limit of each shifter: 0.5 mm (0.02 in)

(3) Reassembly

a.lubricate the grooves in the shifters.

b.Each shifter should be installed in the correct direction.

c. When installing the shifter on the shifter stay, Use the special tool as shown below

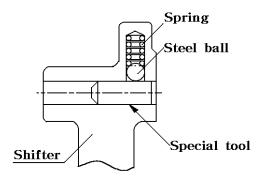


Fig.5-48

SECTION 4. TROUBLESHOOTING

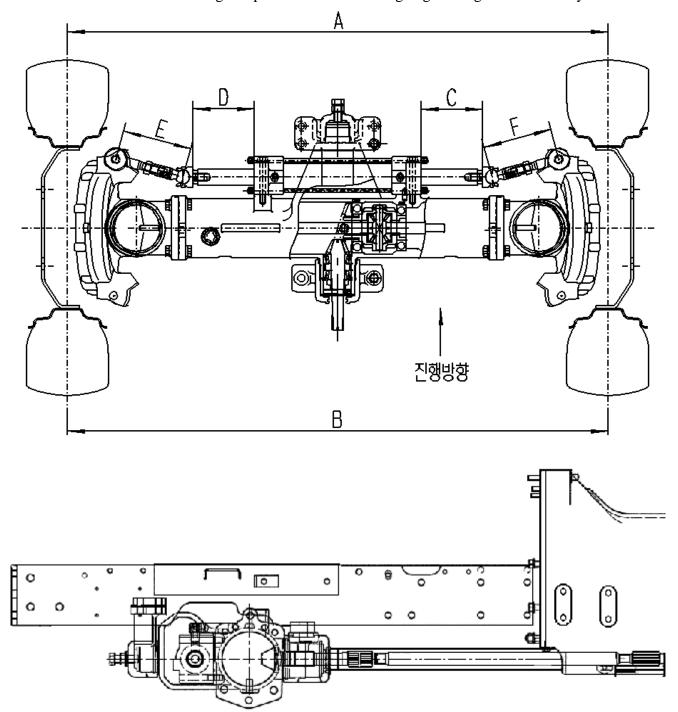
1. WHEEL DRIVE SYSTEM

Problems	Causes	Countermeasures
Transmission makes	Insufficient or improper lubricant	Replenish or replace
noise in neutral	Excessive splines of change shaft,spline hub,etc	Replace
	Worn or broken bearings	Replace
	Slide couplings interfering with the gears due to worn or deformed shifters	Replace
Gears make a noise when shifted.	Improperly disengaged clutch	Repair or replace (Clutch pedal play)
	Wear in width of gears, splined hubs, collars, etc	Replace
	Defective Change shift fork	Replace
Gears disengage by	Broken shifter springs	Replace
themselves	Wear in width of gears, splined hubs, collars, etc	Replace
	Worn shifters	Replace
Gears do not engage or	Improper disengaged shift lever	Repair or replace
disengage	Gears are locked due to foreign matter between them	Remove the foreign matter

2. PTO DRIVE SYSTEM

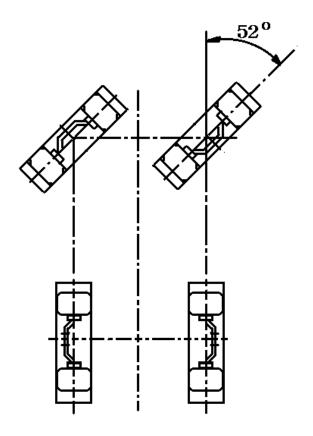
problem	Causes	Counter measures
PTO does not spin with PTO shifted to ON	PTO shift lever is in neutral	Shift lever positively to ON
	Defective PTO switch	replace
	Clogged PTO valve	Wash clean
	Poor Pump	Replace
	Defective solenoid valve	Replace
PTO spins but does not	Worn clutch disc	Replace
produce sufficient torque.	Broken or fatigues seal ring at clutch sleeve	Replace
	Loose joint or broken O-ring of delivery valve	Retighten or replace
	Poor pump	Replace
	Clogged PTO valve	Wash clean
PTO does not stop when PTO switch is shifted to OFF	Defective PTO valve solenoid	Replace
	Poor PTO valve (contamination)	Wash clean
	Broken clutch piston return spring	Replace
	Poor switch	Replace
PTO follows too much when	Improper oil	Replace
PTO switch is shifted to OFF	Insufficient warming up	Let tractor warm up sufficiently
	Poor PTO clutch brake	Replace
	Weak or broken piston return spring	Replace
	Poor PTO valve(contamination)	Wash clean
	Deflected clutch plate	Replace

CHAPTER 6 FRONT AXLE


CHAPTER 6. FRONT AXLE(4WD)	6-1
SECTION 1.GENERAL DESCRIPTION	6-1
SECTION 2. SPECIFICATIONS	6-2
SECTION 3.DISASSEMBLY,INSPECTION,AND REASSEMBLY	6-3
1. Center pivot	
1-1. Disassembly	
1-2. Inspection	6-4
1-3. Reassembly	6-4
2. Front differential	6-6
2-1. Disassembly	6-7
2-2. Inspection	6-7
2-3. Reassembly	6-8
3. Final case	6-10
3-1. Disassembly	-
3-2. Inspection	
3-3. Reassembly	
SECTION 4.TROUBLE SHOOTING	6-15

Chapter 6 Front axle(4WD)

SECTION 1.GENERAL DESCRIPTION


The 4WD front axle is a center pivot type. The front wheel drive mechanism is incorporated as a part of the axle.

The front wheel drive power is taken off the rear transmission and transmitted to the differential in the front axle where the power is divided into right and left and to the respective final cases. In the final cases, the transmitted revolution is reduced by the bevel gears to drive the front wheel. The 4WD mechanism with bevel gears provides wider steering angle and greater durability.

SECTION 2. SPECIFICATIONS

		T475 HST
Wheel alignment	Toe-in (mm)	2~6
	Camber	3° ± 1°
	Caster	1° ± 1°
Front axle	Pivot metal (F) bore (mm)	Ф55
	Pivot metal (R) bore (mm)	Ф80
	Pivot metal (F) bush (mm)	50X55X20
	Pivot metal (R) bush (mm)	75X80X30
	Housing (F) Diameter (mm)	Ф50
	Housing (R) Diameter (mm)	Φ75
	Front wheel steering angles	52°

Fig.6-2

SECTION 3. DISASSEMBLY, INSPECTION, AND REASSEMBLY

1. CENTER PIVOT

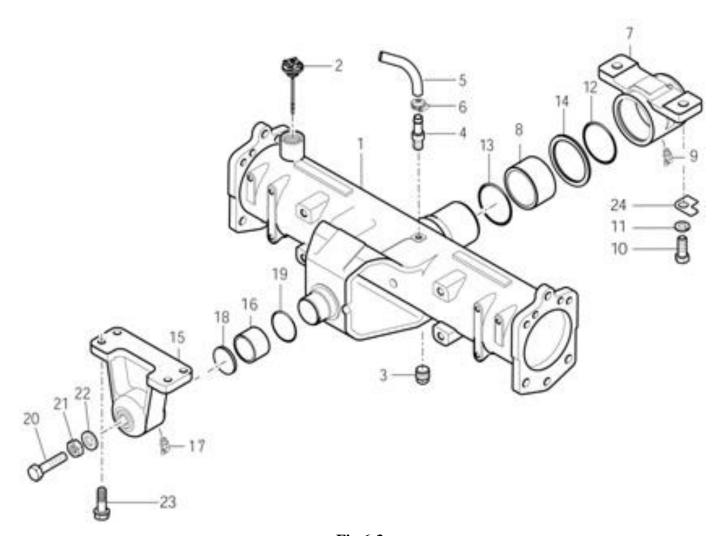
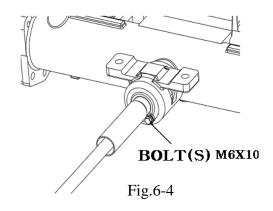



Fig.6-3

1.Housing,front axle	9.Nipple	17.Nipple
2.Oil cap	10.Bolt (M16X50)	18.Spacer (F)
3.Plug	11.Washer,spring(M16)	19.O-ring(G 55)
4.connector	12.O-ring(P)	20.Bolt(M16x50)
5.Hose(530)	13.O-ring(G)	21.Nut(M16)
6.Clip 11	14.Spacer (R)	22.Seal washer
7.Metal,pivot(R)	15.Metal pivot(F)	23.Bolt(M12X40)
8.Bush(75X80X30)	16.Bush(50X55X20)	24.Washer

1.1.DISASSEMBLY

- 1) Dismount the front wheel drive shaft, referring to the pertinent paragraph in chapter 2.
- 2) Remove the right and left tie rods.
- 3) Suspend the front axle bracket with a chain.
- 4) Remove the front metal clamping bolts. The front axle can then be separated from the axle bracket.
- 5) Remove the front and rear pivot metals.

1.2.INSPECTION

1) FRONT AXLE SHAFT DIAMETER

Measure the diameter at a roll bush contact point with a micro-meter or vernier calipers. If the measured value is less than usable limit, replace the housing front axle or bush in Metal pivot (F) or Metal pivot (R).

	Front	rear
Standard value as assembled	Ø50	Ø75
Usable limit	Ø49.9	Ø74.9

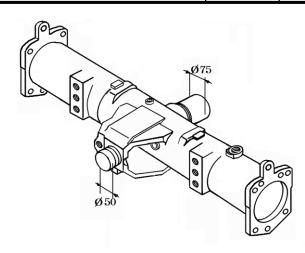


Fig.6-5

2) FRONT AXLE BUSH BORE DIAMETER

Measure the bore diameter of the roll bush in the pivot metal(F). If the measured value exceeds the usable limit, replace the bush.

	Front	rear
Standard value as assembled	Ø50	Ø75
Usable limit	Ø50.35	Ø75.35

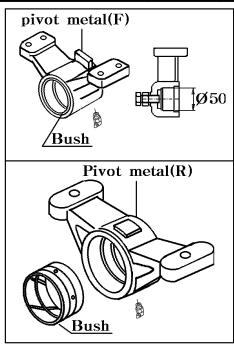


Fig.6-6

3) Worn or damaged oil seals, O-rings, bearings, etc. should be replaced.

1.3 REASSEMBLY

Reassemble the parts in reverse order of disassembly, following these instructions.

- 1) Lips of the oil seals, bush contact surfaces, and O-rings should be coated with grease in advance.
- 2) When installing the roll bushes, abide by the following precautions.
- -Use an installer and press in the bush on a press.
- -The bore surface should be coated with grease in advance.
- -The shim of the roll bush should reach position as shown Fig.6-7.In other words the seam should be in a position which is free from any load.

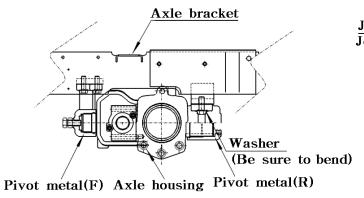


Fig.6-7

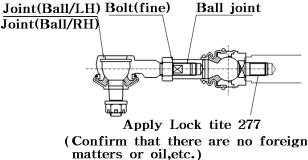


Fig.6-9

Note:

Slanted or forced installation of the bush should be avoided, and the bore surface of the bush should not damaged.

- 3) Pay particular attention to the installed direction of thrust collar, that is, with the sharply-edged face turned towards the bevel gear case.
- 4) When the thrust collar has been replaced or the fore-and aft play of the front axle exceeds the usable limit, correct play by screwing in the adjust bolt on the top of the pivot metal(F).

Note:

After correcting the pivot metal play, tighten the lock nut of the adjusting bolt to a torque of 11.7~13.7KN-cm(1200~1400 kgf-cm)

- 5) The reassembled front axle should rock smoothly while pivoting.
- 6) When the tie-rods are reinstalled, the toe-in should be adjusted. At the same time, the steering angles of the both wheels should also be adjusted.
- 7) Be sure the dimension C and D is same size and Adjust E and F as same dimension.

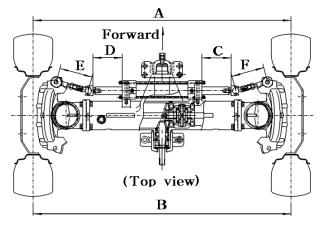


Fig.6-8

2. FRONT DIFFERENTIAL

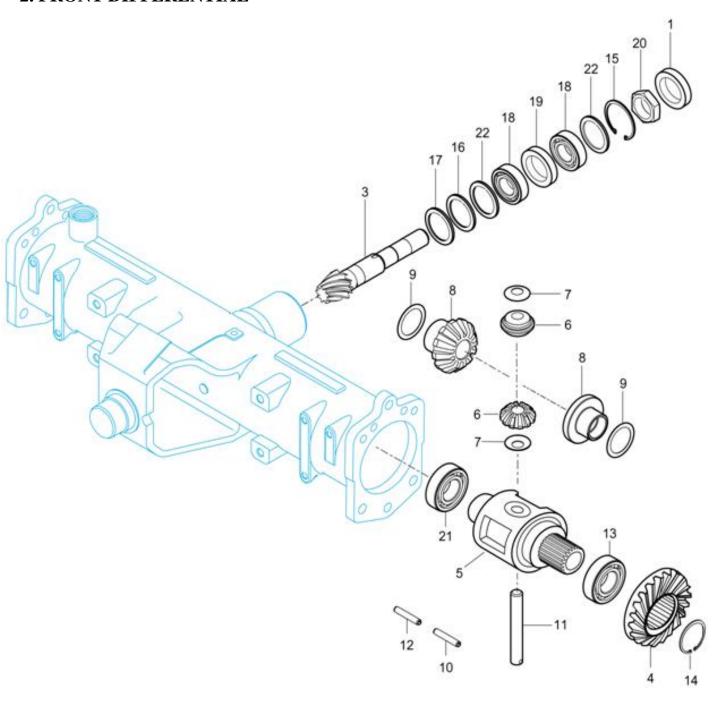


Fig.6-10

1.Oil seal	3.Pinion bevel 8T	4.Gear bevel 23T	5.Case front Diff	6.Pinion Diff (12)
7.Thrust collar	8.Gear diff side (20)	9. Washer thrust	10.Pin spring	11.Shaft diff pinion
12. Pin spring	13.Bearing Ball(6212)	14.Snap ring	15.Snap ring(hole)	16.Shim(A)
17.Shim(B)	18.Bearing taper roller	19.collar	20.Nut(M30)	21.Bearing ball(6211)

22.Shim

2.1 DISASSEMBLY

- 1) As concerns operation prior to removal of the front axle, refer to the paragraph covering disassembly of the center pivot
- 2) Remove both wheels
- 3) Remove the drain plug from the final case and drain oil from the final case.
- 4) remove both final case assembly (A and B) from the front axle(Fig.6-11)

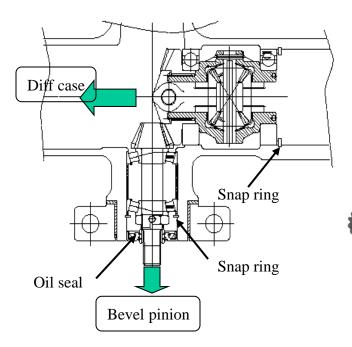
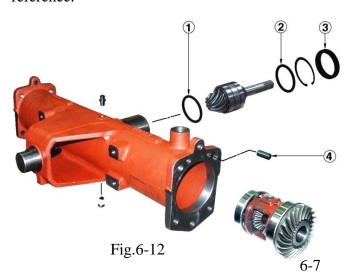



Fig.6-11

5) Remove the oil seal, assuring parallelism of the ring gear and bearing

Note:

The number of shims(1) installed and the shimming thickness should be noted for later reference.

- 6) Remove the bearings from the Axle housing And the ring gear, and then the ring gear can be separated from the Axle housing.
- 7) Remove the straight pin(4) which retains the axle housing.

Note: Discard the removed straight pin and oil seal and install a new pin and Oil seal when reassembled, because this pin and oil seal is apt to be damaged when removed.

- 8) Remove the snap ring and the bevel pinion can then be removed together with the TRB's (Fig.6-11)
- 9) When separating the TRB's from the bevel pinion, release the calking of the lock nut and remove the bearings.

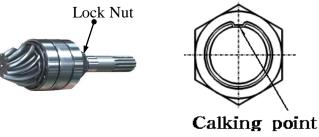


Fig.6-13

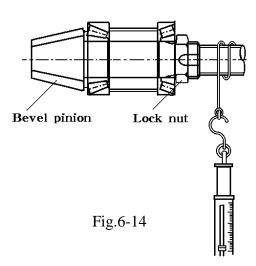
Note:

The lock nut should be calked at a point completely apart from the threads may damage the threads of the bevel pinion.

2.2 INSPECTION

1) visually check the bearing surfaces of the bevel pinion and ring gear teeth.

Note:


The bevel pinion and the ring gear should be replaced as a pair.

2) seriously worn or damaged parts should be replaced.

2.3 REASSEMBLY

Reassembly the parts in reverse order of disassembly, following these instructions.

- 1)Each friction surface should be coated with grease in advance.
- 2)The bevel pinion and the ring gear make a distinct pair after a mesh adjustment performed at the factory. Consequently, when reassembling the pair, be sure to pair parts with a same reference number.
- -Tighten the lock nut to the specified starting torque of the single unit of the bevel pinion.

Note:

As a general rule, a disassembled lock nut should be replaced and a new one should be installed. However, when there is no alternative but to reuse the disassembled lock nut assure that it can lock securely.

Note:

Measure the starting torque a manner as shown in the figure 6-14.

Specified starting	6 -7 Kgf-cm
torque	(0.43-0.51 ft.lbs)

-When any of the bevel pinion,ring gear,TRB, collar,etc.has been replaced, inspect the bevel pinion assembly for thrust play in the front axle housing.

Specified thrust play	0.1-0.3	
mm(in)	(0.004-0.011 in)	

Note:

TRB and collar should be replaced as a pair.

(1) Bevel pinion (8)

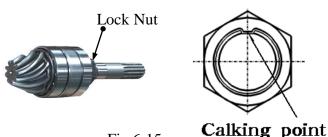


Fig.6-15

(2) FRONT DIFF CASE

- a. When installing washer and thrust washer, apply fresh Molybdenum grease ahead of time.
- b. Apply fresh Molibdenium grease to teeth of diffpinion and dif-side gear.
- c.Each parts should be washed clean, and There should be no sharp edge to the surface of thrust washer.
- d.When assemble the spring pin,Be sure the spring pin should be different direction (Ø5 and Ø3)
- e. When any of the bevel pinion,ring gear,TRB, collar,etc.has been replaced,inspect the bevel pinion assembly for thrust play in the front axle housing.

Specified thrust play	0.1-0.3	
mm(in)	(0.004-0.011 in)	

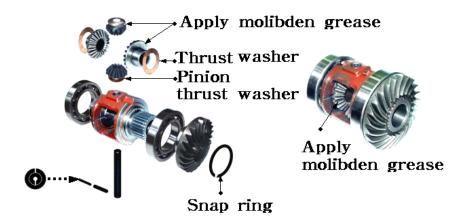
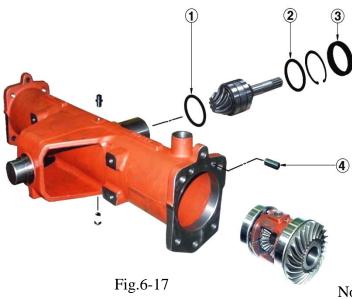



Fig.6-16

3) DIF CASE AND BEVEL PINION

- 1.shim
- 2.shim
- 3.shim
- 4.Parallel pin

- 1) Each friction surface should be coated with grease in advance.
- 2) The bevel pinion and the ring gear make a distinct pair after a mesh adjustment performed at the factory. Consequently, when reassembling the pair, be sure to pair parts with a same reference number.
- 3) When installing the TRB's from the bevel pinion, Be sure the calking of the lock nut and the bearings.
- 4) Install the snap ring and the bevel pinion can then be installed together with the TRB's (Fig.6-17)

Note: Discard the removed straight pin and oil seal and install a new pin and Oil seal when reassembled, because this pin and oil seal is apt to be damaged when removed.

- 5) Install the bearings from the Axle housing And the ring gear, and then the ring gear can be assembled from the Axle housing.
- 6) Install the straight pin(4) which retains the axle housing.
- 7) When any of the bevel pinion,ring gear,TRB, collar,etc.has been replaced,inspect the bevel pinion assembly for thrust play in the front axle housing through drain plug hole.

Specified thrust play	0.1-0.2
mm(in)	(0.004-0.008 in)

3. FINAL CASE

3-1. Front gear case 1.

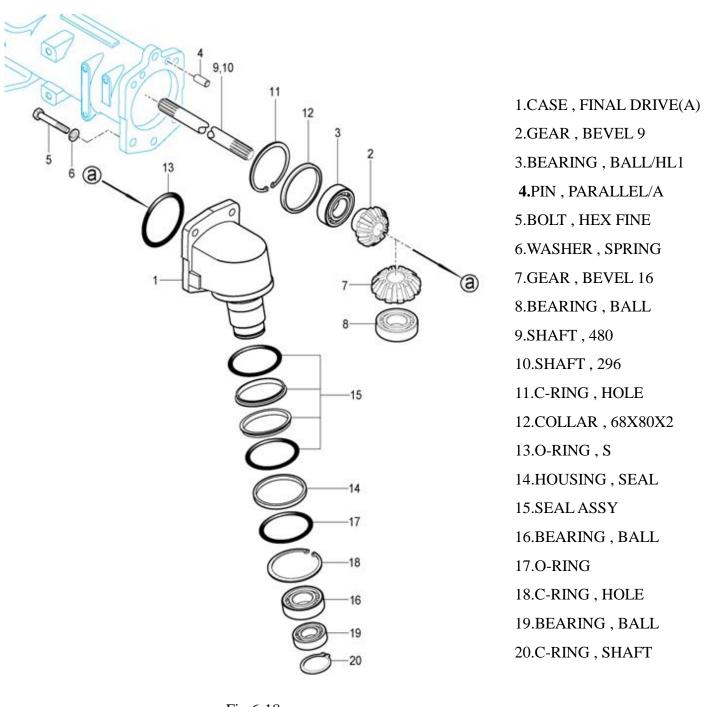
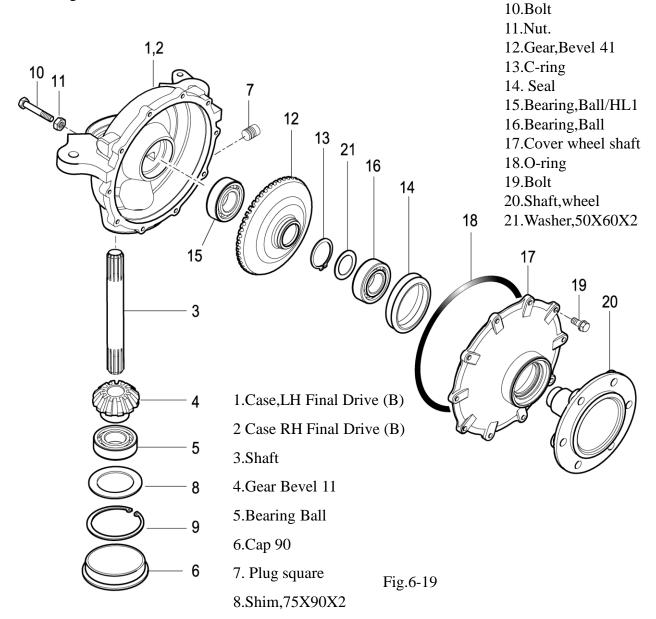



Fig.6-18

3-2. Front gear case 2.

3.1 Disassembly

- 9.C-ring
- 1) Drain oil from the final case by removing the drain plug.
- 2) Remove the tie rod or the tie rod end.
- 3) Remove the final drive case clamping bolts and take out the assembly of the wheel shaft,
- 4) Remove the wheel shaft cover clamping bolts and cap (90)

Note:

Discard the removed Cap(90) and install a new cap(90) when reassembled, because this cap is apt to be damaged when removed.

- 5) Detach the snap ring C from the bevel gear.
- 6) Extract the wheel shaft bearing together with the bevel gear, using a bearing puller

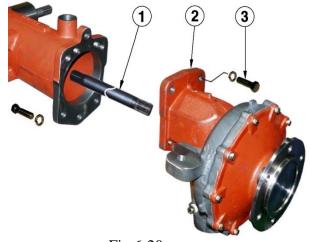


Fig.6-20

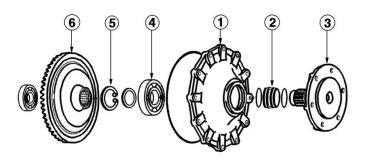
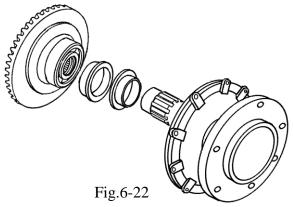
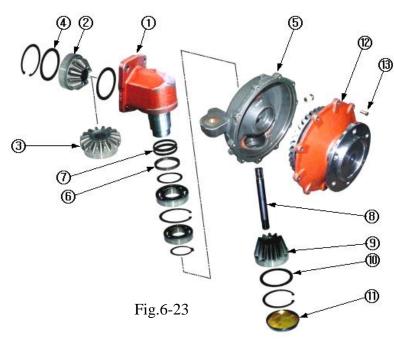
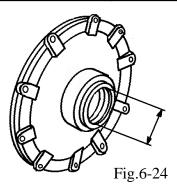




Fig.6-21

7) Remove the stop ring and the wheel shaft can be extracted.

8) Remove the seal from the the wheel shaft cover

9) Remove the cap (11) from the bottom of the final case B and detach the snap ring(hole). Then the counter shaft(8) and RBB can be removed.


Note:

The removed cap(90) (black plug) should be discarded and replaced when reassembled.

3.2 INSPECTION

- 1) Wheel shaft cover
- Inspect mechanical oil seal, O-rings, Gears, cases, etc and replace them if worn or damaged.
- -Measure the diameter the part which makes contact with the wheel shaft, with a micro-meter or vernier-calipers. When the measured value less than the usable limit, replace the wheel shaft cover.

Standard value	62
Usable limit	61.9

- 2) Final Drive case (B)
- -Measure the diameter the part which makes contact with the Final drive case (A), with a micro-meter or vernier-calipers. When the measured value less than the usable limit, replace the wheel shaft cover.

Standard value	110
Usable limit	110.1

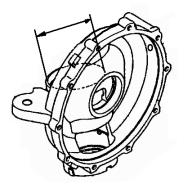


Fig.6-25

3.3 REASSEMBLY

Reassemble the parts in reverse order of disassembly, following these instructions.

- 1) Apply an adhesive (THREE BOND TB1215) to the following parts.
 - a.Contact surfaces between the final case B and wheel shaft cover.
 - b.Contact surfaces between the final case A and front axle.
- 2) The installed wheel shaft should turn smoothly.
- 3) When installing unitized seals on the wheel shaft cover and the rotating part between the final cases (A and B),apply force only to the outer circumference of the seal as shown in Fig.6-26 to avoid deformation.

Fig.6-26

- 4) The oil seal should be coated with grease in advance. Then install them carefully, assuring that their lips are not turned over.
- 5) The reassembled final case (B) should turn smoothly until it makes contact the stopper.
- 6) When the wheel(tire) is reinstalled, Turn it by hand to make sure that all the mechanism turns smoothly without making any noise.
- 7) After adjustment of the toe-in,perform road tests. There should be no abnormalities such as vibration, abnormal noises, defected steering wheel operation, etc.

-Wheel shaft cover

- 1) Every snap ring(5) should be seated securely in its groove.
- 2) Be sure the numbers of Bevel gear is correct (teeth numbers are 41)

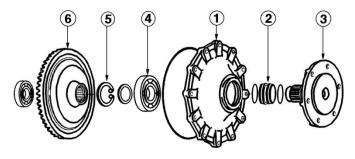


Fig.6-27

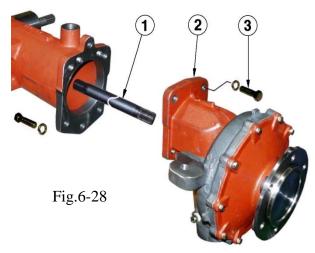
-Final drive case A

- 1) Each parts should be washed clean before reassembly.
- 2) Apply multi-purpose, quality grease to bearings in advance
- 3) Every time a gear and bearings are installed, its smooth rotation should be checked
- 4) Adjust Back lash between bevel gear 9 (2) and bevel gear 16 (3) with collar(4).

Back lash	0.1-0.2
mm(in)	(0.004-0.008 in)

- 5) Apply oil to the housing ahead of time to install the mechanical seal.
- 6) Be sure that the length of shaft (8) is 192 mm.
- 7) Tighten the bolts to the specified torque.

Tightening torque	130-180Kgf.cm


8) Adjust backlash between gear bevel 38 and gear bevel 11(9) with collar(10)

Back lash	0.1-0.2
mm(in)	(0.004-0.008 in)

9) Apply an adhesive to the Cap (90), and be sure not to deform when installing.

Note: Refer to Fig.6-23

- FINAL DRIVE CASE AND HOUSING

- 1) When installing the shaft,Be sure that the gears are not damaged.
- 2) Be sure the differences between the LH and RH shaft.

	LH	RH
Specified length	479mm	295mm

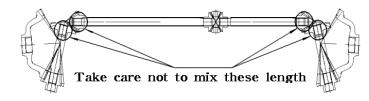


Fig.6-29

3) Tighten the bolts to specified torque.

Tightening torque	1300-1500 Kgf.cm

- STEERING CYLINDER

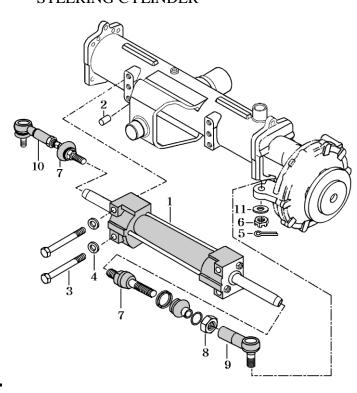


Fig.6-30

- 1) When installing the steering cylinder,Be sure that the rods are not damaged.
- 2) Install the pin(2) before assembling the cylinder.
- 3) Apply an adhesive Locktite and tighten the bolts to specified torque

Tightening torque 900-1100 Kgf.cm		
	Tightening torque	900-1100 Kgf.cm

4) Apply an adhesive locktite to the ball joint (7) and tighten the ball joint to specified torque

Tightening torque	1600-1800 Kgf.cm

5) Be sure to bend the split pin (5) after installing the ball joint

SECTION 4. TROUBLE SHOOTING

PROBLEMS AND PROBABLE CAUSES	COUNTERMEASURES
Steering wheel hard to turn	
1)Too low tire inflation	Inflate to specified value
2)Broken thrust bearing	Replace
3)Stuck or broken ball joint of tire-rod end	Grease or replace
4)Seizure or poor lubrication of axle end bush	Grease or replace
Vibrating or pulling steering wheel	
1)Unbalanced wheels	Adjust balance
2)Wheel deflation	Repair or replace
3)Unequal diameter of both tires	Adjust inflation or replace
4)Loose,worn,or damaged wheel axle bearing	Repair or replace
5)Loose,worn,or damaged wheel steering wheel shaft	Retighten or replace
6)Worn final case bush	Replace
7)Loose final case-front axle tightening bolt	Retighten
8)Loose front wheel(tire)tightening nuts1)	Retighten
• Steering wheel tends to turn to the right or left while tr	raveling on straight paved road.
1) Deflected wear of tire	Replace
2)Different tire diameters	Adjust inflation or replace
3)Damaged final case bearing	Replace
• Excessive or eccentric wear of tire	
1)Improper tire inflation	Adjust
2)Worn front wheel shaft bearing	Replace
3)Poorly adjusted toe-in	Readjust correctly:2-6mm
	(0.08-0.24 in)
4)Front wheel drive is always engaged	Engage FWD only when required
● Noise	
1)Loose fasteners	Tighten correctly to specified torque
2)Worn or damaged final case bearing	Replace
3)Worn bush	Replace
4)Wear or poor movement of tie-rod end	Lubricate or replace
5)Excessive backlash of differential and bevel gear	Adjust
Different steering angles in both directions	
1)Lengths of RH and LH tie-rods are different	Adjust

CHAPTER 7 Rear axle and brakes

SECTION 1.GENERAL DESCRIPTION	7-1
SECTION 2. SPECIFICATIONS	7-2
SECTION 3.DISASSEMBLY,INSPECTION,AND F	REASSEMBLY 7-3
1.Rear axle housing and brake system	7-3
1.1. Disassembly	<i>7-</i> 4
1.2. Inspection	
1.3. Reassembly	
SECTION 4.TROUBLE SHOOTING	

Chapter 7. Rear axle and brakes

SECTION 1. GENERAL DESCRIPTION

The rear axle system is of the central axle type, which contains the final reduction gears, differential gears with diff-lock, and brakes. The power from the engine is transmitted to the right and left wheel pinions through the differential gears, and reduced in the revolution to the rear wheels by the wheel gears. A wet, multi-Disc, mechanical operated brake system is employed. Each of the brakes has 2 friction plates and can produce significant braking force with excellent durability. The two actuators work to push their friction plates in opposite directions, that is, outward, so that stable braking force can be realized in both forward and reverse movements of the tractor. A dif-lock mechanism which is housed in the right-hand rear axle housing is employed to lock the differential gears and is activated by depressing the dif-lock pedal, resulting in the same rotary speeds of both wheels.

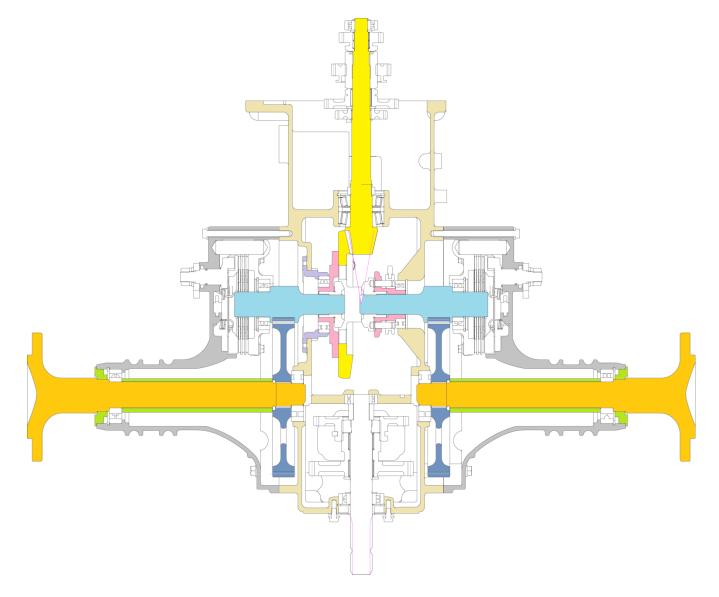
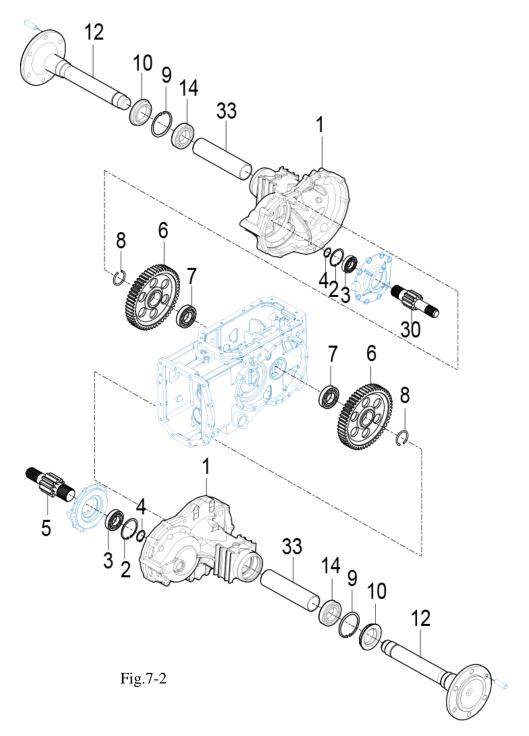


Fig.7-1

SECTION 2. SPECIFICATIONS

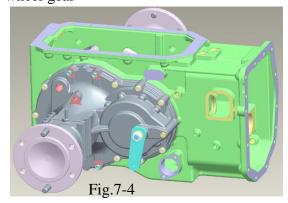

	MOD	EL	T475HST
Final reduction gears		Туре	Spur Gear
		Reduction ratio	5.4
	Friction Plate	Туре	Wet,multi-disc,Mechanically operated
		Outer diameter	Φ153mm(Φ 6.02 in)
Brake system Separator Plate	Thickness	3.4±0.1 mm(0.134 in)	
	Lining material	Paper base	
	Number of plates	4 on each side	
	Outer diameter	Φ158mm(Φ 6.22 in)	
	1 -	Thickness	2.5±0.09 mm(0.098 in)
	Tiuce	Number of plates	4 on each side

SECTION 3.DISASSEMBLY, INSPECTION AND REASSEMBLY

Separate the rear axle housing from the rear transmission referring to paragraph 6.(1) of SECTION 4.

SEPARATION OF MAJOR BLOCKS in Chapter 2

1) REAR AXLE HOUSING AND BRAKE SYSTEM


1. Housing, rear axle 2. C-ring 80 3. Bearing, Ball/6208 HL1 4. C-ring shaft 40

5.Pinion LH, shaft 6.Gear(spur/54) 7.Bearing,ball/6209HL1 8.Stop ring

9.C-RING, HOLE 10.Seal shaft 12.Shaft wheel 14.Bearing, Ball/6210

30.Pinion,RH wheel 33. Collar(56X60X238)

- 1.1 Disassembly
- 1) Release the bolt and nut and remove them.
- 2) Extract the bearing with a puller and remove wheel gear

3) Remove the collar and pull out wheel shaft(3)

Note:

Removed oil seal should be replaced with a new one when reassembled

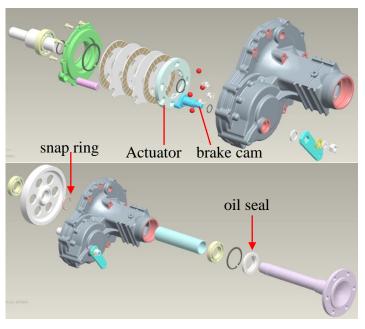


Fig.7-5

- 4) Detach the brake rod from actuator
- 5) Remove plate and the rubber boot
- 6) Remove the brake metal tightening bolts and remove brake metal with wheel pinion and the disc brake assembly on it
- 7)Remove the snap ring of wheel pinion (Fig.7-5) And individually separate the friction plates, actuator and separator plates from each other.
- 6) The actuator can be disassembled by removing Spring

Note:

Be careful to keep the friction surfaces of the linings, Actuators and separator plates free from damage and foreign matter.

1.2. INSPECTION

1) Friction plates.

Replace the plates whose surfaces have been become glossy by carbonization or whose thickness exceeds the usable limit.

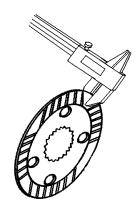


Fig.7-7

Standard thickness:mm(in)	$3.4 \pm 0.1 (0.134)$
Usable limit:mm (in)	3.0 (0.118)

Note:

Also replace those whose grooves have been worn out completely even if only on one side

2) Metal brake

Check the pressure plate, and brake rod for abnormality.Replace defective parts.Replace the metal brake whose thickness exceeds the usable

limit.

Fig.7-8

Standard thickness:mm(in)	15(0.590)
Usable limit:mm (in)	14.5((0.571)

Note:

Slight scratches on the friction surface can be corrected with sandpaper(#1000)

3) Separator plate.

Measure the thickness and replace the plate whose thickness exceeds the usable limit or whose surfaces are damaged (Fig.7-9)

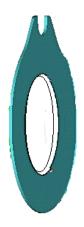


Fig.7-9

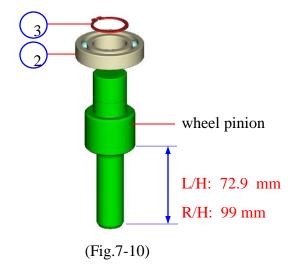
Standard thickness:mm(in)	2.5±0.09
	(0.098)
Usable limit:mm (in)	2.2(0.087)

4) Wheel shaft

Check the shaft for abnormalities like wear. damage,etc,and replace a defective one.

5) Bearings

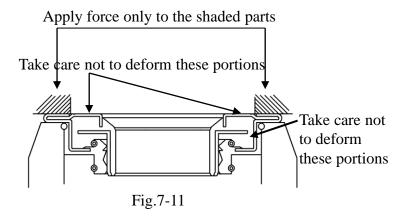
Check them for abnormalities like hitching, irregularity,etc.in rotation after being washed clean.Replace defective ones.


6) Oil seals

Removed oil seal should be replaced with a new one when reassembled.

1.3 REASSEMBLY.

Reassemble the parts in reverse order of disassembly ,follow these precautions.


- 1) Make sure that oil grooves, friction surfaces, etc of the brakes are free from matter such as dust, iron powder,etc.to avoid brake lining damage.
- 2) When installing the brake unit on the wheel pinion, friction plates and separator plates should be arranged in correct order and never forget to retain the unit with the snap ring.
- 3) Brake metal tightening bolts should be tightened to the specified torque with a torque wrench.

Tightening torque	5.5-7 Kgf.m
	(39.8-50.6ft-lbs)

4) Replace the oil seal.

Install the bearing, snap ring, and collar into the axle housing, and then press in the oil seal by applying force only to the circumference as shown in the figure (Fig.7-11)

- 5) press in the wheel shaft.
- 6) Install the wheel gear and bearing on the wheel shaft and retain them with nut.
- 7) Apply adhesive (THREE BOND 1215) to the contact surfaces of the brake metal and housing and then retain the plates by tightening the nuts to the specified torque.

Tightening torque	0.6-0.8 Kgf.m
	(4.3-5.8ft-lbs)

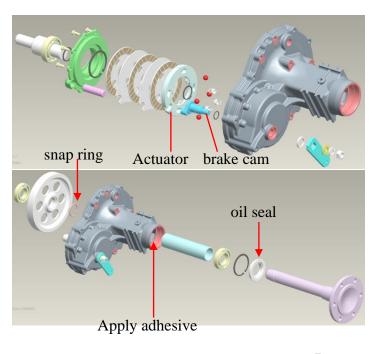


Fig.7-13 Wheel shaft metal

SECTION 4. TROUBLESHOOTING

Problem	Cause	Countermeasures
1) Rear Axle		
Noises	•Worn or damaged bearing	Replace
	•Worn gear or wheel shaft	Replace
2) Brake system		
(1) Insufficient braking	•Insufficient depressing of brake pedals	Depress pedals positively.
force	•Improper pedal free play	Adjust
	•Worn friction plates	Replace
(2) Brake Noise	•Insufficient brake oil	Replenish
	Broken actuator spring	Replace
	•Eccentric wear of actuator	Replace
(3) Brake overheating	•Insufficient oil	Replenish
	•Excessive pedal free play	Adjust
	•Improper operation	Operate brakes properly
(4) Brake cannot be	•Improper brake pedal free play	Adjust
disengaged completely	•Broken actuator spring	Replace
	•Broken pedal spring	Replace
(5) Not uniform braking	•Improper free play adjustment	Adjust
	•Worn actuator ball	Replace
(6) Excessive pedal play	•Improper adjustment of brake rod	Adjust
	•Worn actuator-fork tightening bolt	Replace
	•Worn brake shaft of brake arm	Replace

Chapter 8 Power assisted steering system

SECTION 1.GENERAL DESCRIPTION	8-1
SECTION 2. SPECIFICATIONS	
2.1 Gear pump	8-2
2.2 Power Steering valve Unit	8-2
2.3 Oil tank	
SECTION 3. FUNCTION	8-3
3.1 Technical Data OSPM	8-4
SECTION 4.DISASSEMBLY,INSPECTION,AND REASSEMBLY	
4.1 Major component of steering valve	8-6
4.2 Special tools	8-7
4.3 Disassembly	8-7
4.4 Inspection	8-8
4.5 Reassembly	8-8
SECTION 5. TROUBLESHOOTING	8-12

Chapter 8. Power assisted steering system.

SECTION 1. GENERAL DESCRIPTION

The hydraulics of this power-assisted steering system are actuated by a specially designed steering valve system.

Non Load reaction valve blocks the L,R cylinder ports in neutral condition and does not transmits the reaction load of the tire to the steering wheel in neutral. Generally the system is used for the vehicles that treat heavy equipment or low speed traveling.

Hydraulic circuit consists of Independent system.

The oil from tank flows into gear pump of orbitrol via filter and the quantity of oil in the proportion to the rotations of steering wheel flows into steering Cylinder Via "R"-port at right turn and via "L"-port at left turn.

As follow figure shows components composition of power steering system on the vehicle with the

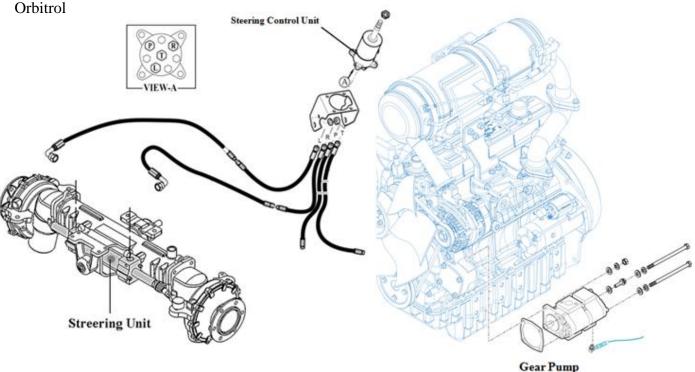


Fig.8-1

SECTION 2. SPECIFICATIONS

1. Gear Pump

MODEL	T475HST
Delivery (cc/rev)	7.2
Maximum pressure (kgf/ ^C m³)	210
Rated operation speed (rpm)	500~3000
Rotation direction	C.C.W as viewed from shaft

2. Power steering valve Unit(orbitrol)

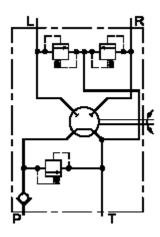
MODEL	T475HST
Model number	OSPM 80 ON
Displacement (cc/rev)	80
Rated flow (l/min)	7~20
Maximum system pressure (kgf/cm³)	180
Max. back pressure (kgf/cm³)	20
Max. temperature(°C)	90
Input torque (N.m)	0.8~1.5
Inlet relief pressure setting (kgf/cm³)	110~115
Recommended filtration (ISO4406)	22/20/17
Weight (kgf)	2.7

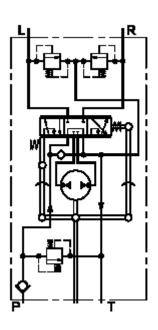
3. Oil Tank

MODEL	T475HST
TANK	TRANS MISSION
Fluid volume (ℓ)	32
Fluid	THF500

SECTION 3. FUNCTION

OSPM is a hydrostatic steering unit which can be used with an add-on steering column, OTPM/OTPM-T or with the steering column integrated with the unit.


The steering unit consists of a rotary valve and a rotary meter.


Via a steering column the steering unit is connected to the steering wheel of the vehicle. When the steering wheel is turned, oil is directed from the steering system pump via the rotary valve and rotary meter to the cylinder ports L or R, depending on the direction of turn. The rotary meter meters the oil flow to the steering cylinder in proportion to the angular rotation of the steering wheel.

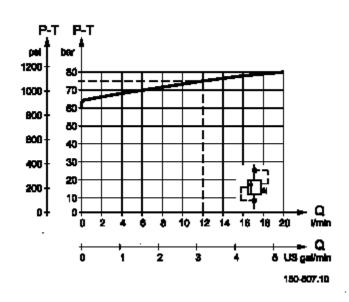
If the oil supply from the steering system pump fails or is too small, the steering unit is able to work as a manual steering pump.

OSPM-ON

Open center steering units have open connection between pump and tank in the neutral position.

1. TECHNICAL DATA OSPM

Max. input flow			20 l/min [5.28 US gal/min]
Ambient temperature	_	Min.	−30°C [−22°F]
		Max.	+60°C [140°F]
Surface treatment Permissible temperature assuming non-activated steering unit		120°C [248°F] for 20 minutes	
Oil temperature		Min.	-30 °C [-27°F]
		Max.	+90 °C [194°F]
Oil viscosity		Min.	4 mm2/s [40 SUS]
		Max.	1000 mm2/s [4629 SUS]
Filtration Max. degree of contamination ISO 4406		ON	22 / 20 / 17
		PB	22 / 20 / 17
Steering torque	Normal steering		0.8-1.5 Nm [7.08-13.3 lbf·in]
Manual steering Momentary load			Max. 80 Nm [708 lbf·in]
			Max. 160 Nm [1416 lbf·in]


MANUAL STEERING PRESSURE

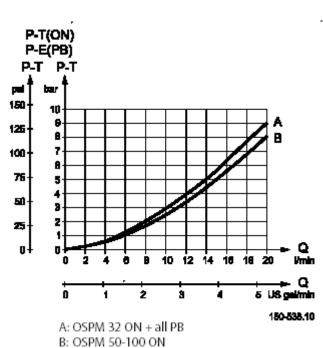
Under normal operating where the steering pumps supplies an adequate oil flow at the required pressure, the maximum torque on the steering wheel will not exceed 2 Nm[17.7 lbf·in]. If the oil flow from the steering system pump fails or is too small, the steering unit functions automatically as a manual steering pump. Manual steering can only be used for a limited control of the vehicle if a sudden drop of pump pressure occurs. The Pm 50bar[725 psi] shows the manual steering pressure (Pm) for all sizes of Sauer-Danfos steering units type OSPM at a steering wheel torque of 80 Nm [708 lbf·in]. The values apply only if the suction conditions on the steering unit T port are adequate.

PRESSURE RELIEF VALVE

The pressure relief valve protects the pump and steering unit against excess pressure and limits the system pressure while steering.

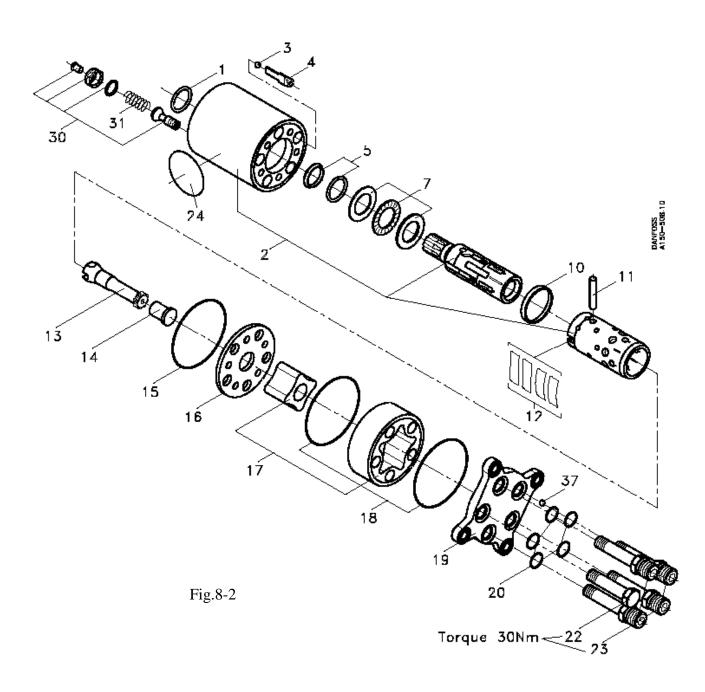
The pressure relief valve in the steering unit will limit the maximum pressure drop from P to T. The pressure relief valve is set at 12 l/min[3.17 US gal/min] flow.

SHOCK VALVES


The shock valves protect the steering unit against shocks from external forces on the steering cylinder. The shock valves in the steering unit limit the max pressure drop from L to T and from R to T. The shock valves are set at 1 l/min [0.27 US gal/min]. They are of the direct type and therefore have a very quick reaction. The setting tolerance is +20 bar [+290 psi].

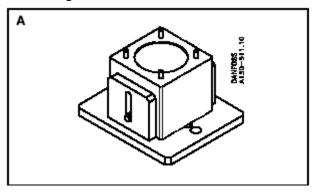
CHECK VALVE

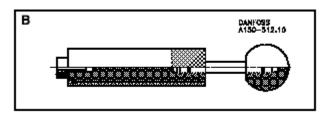
The check valve protects the driver against kickbacks in the steering wheel. It prevents the oil from flowing back into the pump line during steering under high pressure on the cylinder side. The check valve is mounted in the P-connection of the steering unit.


PRESSURE DROP IN NEUTRAL

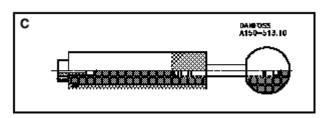
The pressure drop is measured with the steering unit in neutral position.On the OSPM ON the pressure drop is measured from P to T. The values are valid at an oil temperature of 50°C [122°F] and a viscosity of 21 cSt [100 SUS].

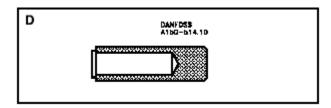
SECTION 4. Disassembly, Inspection And Reassembly

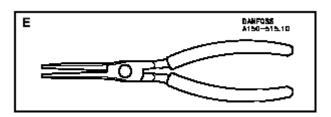

1. Major component of steering valve (orbitrol)


- 1.Dust seal ring 2. Housing spool and sleeve 3.Ball 4. Ball stop 5.Shaft seal 7.Bearing 10.Ring
- 11. Cross pin 12.Set of springs 13.Cardan shaft 14.Spacer 15.O-ring 16. Distributor plate
- 17.Gear wheel set 18.O-ring 19.End cover 20.O-ring 22.Special screw 23. Special screw
- 24. Name plate 30. Complete relief valve.

2.SPECIAL TOOLS


A.Holding tool, code no. SJ150L9001-01


B .Assembly tool for shaft seal \(\phi 17.5, \) code no. code no. SJ150L4011 - 01


C. Assembly tool for shaft seal ø19,2, code no. SJ150L4012 - 01

D. Assembly tool for dust seal ring, code no. SJ150L0396 -01

E. Pliers for piston in pressure relief valve, code no. SJ150-9000 -25

F. Fork for fitting cardan shaft (OMM) SJ 151G9000 -1

G .Ordinary hand tools.

Socket spanner (5/8 in)

Ratchet spanner, 1/2"

Torque wrench: 0-70 Nm (0-7 da Nm)

Allen keys: 5 & 8 mm a/flats

Small screwdriver, ground sharp.

Pincers

3. Disassembly

Separate the orbitrol referring to Fig.8-2 of SECTION .Disassembly,Inspection,And Reassembly 1.Major component of steering valve (orbitrol)

STEP 1.

- Column

If there is a steering column on OSPM, place the unit in the holding tool, on the **four locating pins** with steering column upwards. Dismantle the steering column.

STEP 2.

-Pressure relief valve (30, 31)

If there is a pressure relief valve in OSPM, remove the plastic plug from the adjusting screw and unscrew with the 5 mm a/flats Allen key. Remove the spring and use special pliers-lift the valve cone out of the housing.

Lift OPSM clear of the holding tool, turn it so that the output shaft points downwards and place it in the holding tool again.

Note, the locating pin in the tool must engage with the OSPM housing.

STEP 3.

-Special. Screws (22, 23) Remove the screws with a 16 mm a/flats (5/8") spanner.

-End cover (19) Remove end cover sideways.

STEP 4.

-Gear wheel set (17, 18)

Hold a hand under the gearwheel set to keep the gearwheel from falling out.

Remove O-rings.

STEP 5.

-Distributor plate (16) Remove distributor plate.

-Cardan shaft (13) Remove cardan shaft.

STEP 6.

-O-ring (15)

Remove O-ring from housing.

-Balls and ball stop (3, 4, 37) Shake out check valve ball (not in all units), ball stop and emergency steering ball. Use pincers if necessary.

STEP 7.

Place the OSPM in the tool again. Lift up steering unit and fixture in one piece and turn it 90° to horizontal.

-Housing/spool/sleeve (2) Turn the spool set so that the pin in spool and sleeve is horizontal and push it out

STEP 8.

-Bearing (7)

Remove bearing from shaft end.

The outer washer may sometimes adhere to the housing. If the washer does not come out with the shaft, it will come out when shaft seal item 5 is being pressed out.

-Ring(10)

Remove retaining ring for the neutral position springs.

STEP 9.

-Cross pin(11)

Press the pin out of the spool set. Carefully press the spool out of the sleeve.

-Springs (12)

Press the neutral position springs out of the spool.

-Dust seal (1)

Remove the dust seal ring (with a "sharp" screwdriver).

-Shaft seal (5)

Remove the shaft seal

(with a "sharp" screwdriver if necessary).

4. Cleaning, inspection, replacement and lubrication

Note:

a.Clean all parts carefully.

b.Carefully check all parts and replace imperfect parts, if any.

c.Always replace all sealing parts during a repair.

d.Before assembly, lubricate all parts with hydraulic oil and grease rubber parts with Vaseline.

5.REASSEMBLY

STEP 1.

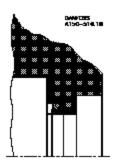
-Housing (2)

Place the OSPM housing horizontally in the holding tool, with the hole for the output shaft facing the tool.

Note: the locating pin in the tool must engage with in the OSPM housing.

STEP 2.

-Shaft seal (5)


With the assembly tool the shaft seal must into the housing.

Note that the small guide piece at the front of the tool must remain in the hole for the output shaft when the tool itself is drawn out of the housing.

Note: there are two different tools:

One for housings for steering column mounting (SJ150L4011-01)

One for housings with integrated steering column (SJ150L4012-01).

STEP 3

-Spool/sleeve (2)

Guide spool and sleeve together, turn the spools so that the key slots are opposite each other.

STEP 4.

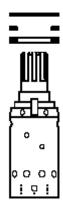
-Springs (12)

Insert the curved springs between the flat springs and push them into place (see sketch).

STEP 5.

Spring retaining ring (10)

Center the springs in the spool/sleeve set and guide the ring down over the sleeve. Note: The ring must be able to rotate unimpeded by the springs.


STEP 6

-Cross pin (11)

Fit the cross pin in the spool set.

-Thrust bearing (7)

Fit the thick race, needle cage and thin race. Lubricate the output shaft on the inner spool with Molykote PG plastslip 75, on the surface in contact with the shaft seal.

STEP 7

-Housing /spool/sleeve (2)

a. With the housing still horizontal in the holding tool - secure it with one hand. With the other hand take the assembled spool/sleeve set, making sure two fingers hold the cross pin (11) in position. Guide the spool set into the housing with the cross pin (11) horizontal.

Note:

Be careful with the small guide piece from mounting of the shaft seal.

With it is pressed out by the shaft rotary.

b. With housing and spool set remaining in the tool, lift the whole unit into vertical position. The pin in the spool set must now point towards port P in the housing, either at 6 o'clock or 12 o'clock.

STEP 8.

-Ball (3)

Place the emergency steering ball in port P.

-Ball stop (4)

Place the ball stop in port P.

-Ball (37)

Place the check valve ball (if required) in port P

STEP 9.

-O-ring (15)

Fit the O-ring in the housing.

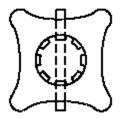
-Distributor plate (16)

Place the distributor plate on the housing. Turn it so that the holes line up.

STEP 10

-Cardan shaft(13)

Fit the cardan shaft into the inner spool and allow it to engage with the pin.


If so required use fork SJ 151G9000-1to retain the cardan shaft.

STEP 11

17 Gear wheel

When fitting the gearwheel, it must be oriented correctly so that it engages with the cardan shaft.

The cross pin (11) in the spool set must line up with the bottom of the teeth in the star (see sketch).

STEP 12

-O-rings (18)

Place the O-rings in the grooves on each side of the gearwheel rim.

-Gear ring (17)

Place the gearwheel rim over the distributor plate so that all holes are in line with each other.

STEP 13.

-Spacer (14)

Place the spacer over the cardan shaft.

-End cover (19)

Place the cover so that the hole marked "P" lines up with port P in the housing("6 o'clock" or "12 o'clock").

STEP 14.

-Special screws (20, 22,23)

Fit screws (with O-rings). Remove the retainer fork. Tighten all five screws (cross pattern) with 30 ± 3 Nm (3 daNm).

Note:

With open center units, the screw with no oil flow connection must be fitted in port E.

If the OSPM must be mounted with a Pressure relief valve, lift it out of the tool and place it on the four pins with the axle journals upwards.

STEP 15.

-Piston (30)

Fit the piston.

-Spring (31)

Fit the spring.

STEP 16.

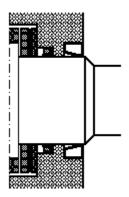
-Adjustment (30)

Screw in the adjusting screw.

STEP 17. (Test)

a.Lift OSPM out of the tool and prepare it for testing.

The pressure relief valve can be set either on a test panel or in a system with pressure-gauge read-off.


b.Insert plastic plug.

STEP 18.

Dust seal (1)

Guide the dust seal ring down over the shaft end press into place in the housing with assembly tool. SJ 150L0396 - 01.

Note: The dust seal must be fitted after testing so that any leakage from the shaft seal can be detected.

SECTION 5. TROUBLESHOOTING

Problems and probable causes	Counter measures	
1. Steering wheel is very heavy to turn		
Poor assemble between steering column and unit.		
(1)Spline of column and unit are assembled tightly.	-Replace column spline	
(2)Spool of unit is seized by spline of column	-Check column assembly face and spline	
	length (MAX 6.5mm)	
(3)Poor rotation of column	-Replenish oil or Exchange	
2) Insufficient pump pressure or fluid volume		
(1)Check pump delivery	-Exchange pump	
(Unit volume×120 rpm×1.15)		
(2)Check oil tank fluid volume	-Replenish oil	
(3)Check pump pressure	-Adjust relief pressure	
3)Trouble internal steering unit valve		
(1)Low setting pressure of relief valve	-Adjust fluid level properly	
(2)Ball-nut heavy to work	-Wash clean or replace	
4)Trouble machine mechanism.		
(1)Poor link work	-Wash and replenish oil	
(2)Excessive sector gear pre-load	-Adjust backlash	
2. Return to neutral is too slow		
1)Poor assemble steering column and unit		
(1)Poor assemble to center between column and unit	-Loosen the bolt and fix again with center	
(2)Column assembly face depressed unit bushing	-Replace column or repair	
2)Depressed control set (spool+sleeve)		
(1)Excessive fluid volume		
(-/	1	
(2)Excessive pressure	-Adjust fluid level properly	
• •	-Adjust fluid level properly -Adjust pressure	
(2)Excessive pressure		
(2)Excessive pressure	-Adjust pressure	
(2)Excessive pressure (3)Dust	-Adjust pressure	
(2)Excessive pressure (3)Dust 3) High pressure ratio of "T" port (tank port)	-Adjust pressure -Wash	

Problems and probable causes	Counter measures
3. Free play of steering wheel	
1)Too low elastic of centering spring	
(Remove P port pipe line and check left and	
right turning)	-Replace spring
(1)Damaged spring or poor elastic	
2) Depressed control set	
(1) Excessive fluid and pressure	-Adjust fluid level and pressure properly
(2) Depressed by foreign material	-Wash
(3) Depressed from external when assemble	-Check column and adjust
with column	
4. Steering wheel resistance with turning	
(1)Worn of spline gear column	-Replace column
(2)Depressed control set	-Wash,and Adjust fluid level and pressure
	properly
(3)Air trapped in cylinder and pipe line -Deflate the air	
(4)Excessive backlash column	-Adjust column
(5)Poor turning of column,or wear of bearing.	-Replace column and replenish oil
.Too much free play of steering wheel(Rou (1)Air trapped in steering cylinder and pipe line.	igh touching on tire causes vibration) -Deflate the air
(2)Worn ball bearing	-Replace
.Free play steering wheel	
(1)Insufficient oil in the tank	-Replenish oil
(2)Worn,damage steering cylinder	-Replace oil seal and cylinder
(3)Loose spacer in unit	-assemble spacer parts.
.Kick-back of steering wheel	
(1)Loose check valve in "P" port or don't operate	-Adjust check valve

Problems and probable causes	Counter measures
8.Serious kick-back each side	
(1)Poor assemble the gyrotor lower the unit	-Reassemble
9. Steering wheel is very heavy to begin t (1)Oil density is too high or cool	-Replace oil
9. Steering wheel is very heavy to begin t (1)Oil density is too high or cool 10. External Oil leakage	
(1)Oil density is too high or cool	
(1)Oil density is too high or cool 10. External Oil leakage	-Replace oil
(1)Oil density is too high or cool 10. External Oil leakage (1)column	-Replace oil -Replace oil seal,slide ring

SECTION 1. GENERAL DESCRIPTION9-1
SECTION 2. SPECIFICATIONS9-2
SECTION 3. MAJOR COMPONENT OF THE HYDRAULIC
SYSTEM 9-3
1.Hydraulic system 9-3
2.Flow-divider 9-4
3.Flow-control valve(Slow-return check valve)9-7
4.Safety valve(main relief valve) 9-9
5.Gear pump 9-10
6.Filter 9-11
SECTION 4. REMOTE HYDRAULIC CONTROL 9-12
1.Remote hydraulic control valve (optional) 9-12
SECTION 5.HYDRAULIC SYSTEM9-13
1.Hydraulic cylinder 9-13
2.Linkage(Internal) 9-15
3.Linkage(External) 9-16
4.Disassembly 9-17
5.Reassembly 9-18
6.Adjustment of the link mechanism 9-21
7.Main control valve 9-23
7.1.General description 9-23
7.2.Specifications 9-23
7.3.Construction 9-23
7.4.Operation 9-24
SECTION 6. TROUBLESHOOTING 9-25

Chapter 9 Hydraulic system

SECTION 1. GENERAL DESCRIPTION

The hydraulic system is composed of a gear pump, valves, oil filter, cylinder (actuator), piping, etc. The implement lift is operated by a control valve which is actuated by the control lever through a link mechanism.

ON and OFF of the PTO is controlled by a hydraulic, wet, multi-disc clutch whose circuit is opened and closed by an electromagnetic valve in the flow-divider.

The construction and circuit of the hydraulic system are shown in Fig.9-1 and 9-2

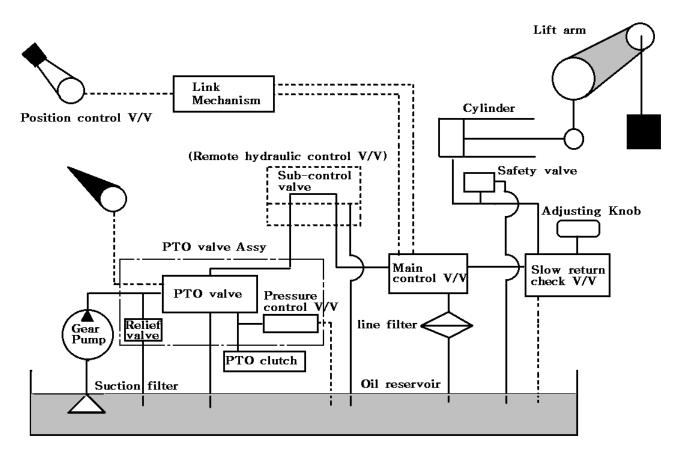


Fig.9-1 hydraulic system construction

SECTION 2.SPECIFICATIONS

		T475HST
Piston and cylinder	Lift (kgf)	
	(At lower link top end / 24in behind)	1200 / 800
	Cylinder port leaks (cc/min.)	10
Control Valve	(Under a pressure of 9800kpa(100 kgf/cm²)	(0.610 cu in)
	With gear oil SAE 80W	
	Cracking pressure (kgf/ cm²)	135
Main relief valve	Relief pressure (kgf/cm²)	160
	Delivery(91% efficiency): litre (cu.in) mm	
Gear Pump	At 3000rpm (3000x0.91x9x0.903)	22.2
	Fluid	TDH oil or Donax TD
	Rated flow (\(\ell\)/min)	35
Suction filter	Filtration density (mesh)	150
	Filtration area (CM²)	450
	Rated flow (\ell/min)	32
Line filter	Filtration density (mesh)	80
	Filtration area (CM²	31

NOTE: Recommendable Transmission oil

Manufacturer :Product

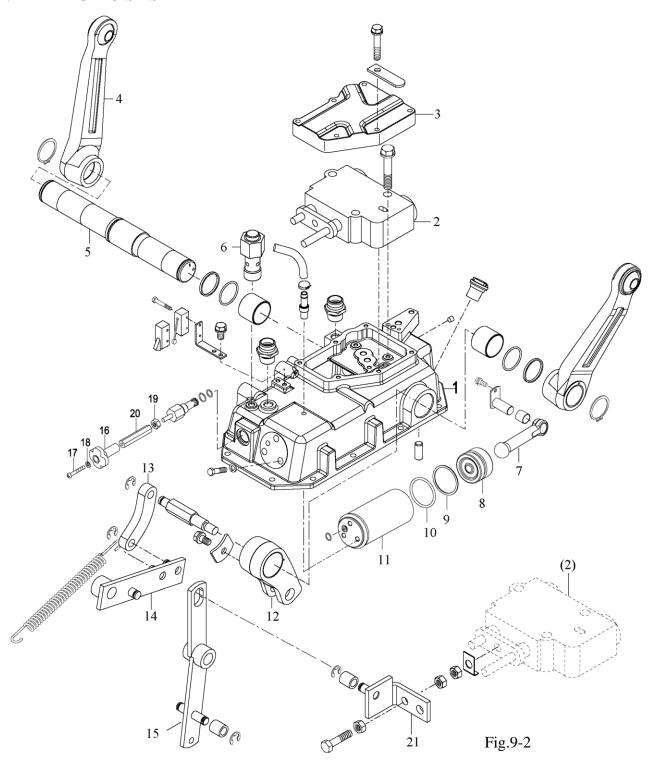
CALTEX :Textran TDH Premium

Texaco :TDH oil

Chevron :Chevron 1000THF

ESSO :Torque Fluid 56

MOBIL :Mobil fluid 423


SHELL :Donax TD

CASTROL :CASTROL AGRI MULTITRANS

TOTAL :Transmission MP

SECTION 3. MAJOR COMPONENT OF THE HYDRAULIC SYSTEM

1.HYDRAULIC SYSTEM

1.Case, Cylinder 5.Lift shaft 9,10.O-ring P

14. Arm link

18. Washer spring

2.Main control valve

6.Relief valve

11. Cylinder15.Link valve

19.Nut

3. Cover, Main control valve

7.Rod,piston

12.Lift crank

16.Knob, slow return

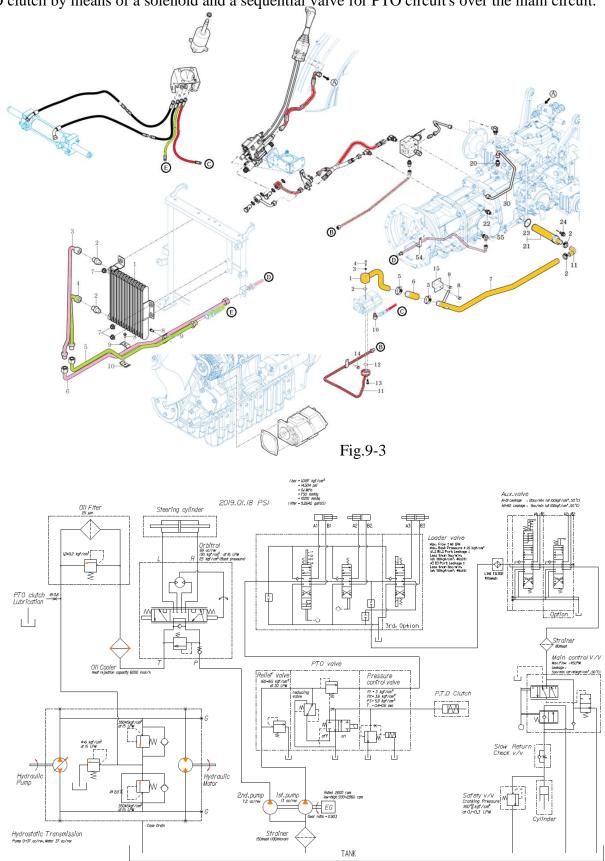
20.Shaft

4.Lift arm

8.Piston,hyd.

13.Link,crank lift

5.Emm,erum


17.Screw

21.Clevis

2.FLOW-DIVIDER

GENERAL DESCRIPTION

This valve is installed to bypass working fluid of a specified pressure from the main circuit into the PTO circuit through a fixed orifice. It includes a changeover valve for engaging and disengage the PTO clutch by means of a solenoid and a sequential valve for PTO circuit's over the main circuit.

(1) Solenoid

This solenoid is switched on or off by operating the PTO switch. With this lever operation, the solenoid shifts the changeover valve to the left or the right to bypass or block the flow to port B.

(2) PTO changeover valve

This valve is composed of the spool and spring. When the solenoid is switched on,the spool is moved to the left by overcoming the spring force and allows the fluid from the pump to flow from port P to port B through the fixed orifice.

-When the solenoid is switched 「ON」

The fluid from the pump flows to port B through port P,the pressure-reducing valve, and the changeover valve.

The pressure of the PTO clutch circuit and that of passage(2) are the same and will be set as P_2 . The pressurized fluid acts on the left-hand side of the valve, passing through port; its pressure will be set as P_1 .

As passage (1) and passage (2) are interconnected, then $P_1=P_2$.

The force imposed upon the left-hand side of the valve is P1 whereas the force imposed upon the right side of the valve is P1 plus the spring force. Consequently the spool is pushed leftwards.

Here port A is blocked, so the fluid from the pump is branched off to the PTO clutch.

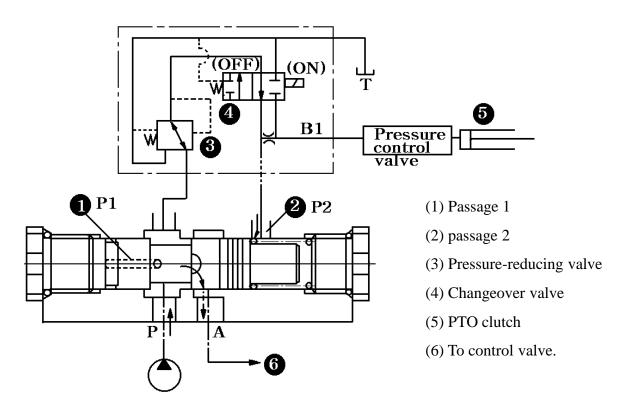


Fig.9-4

-When the solenoid is switched 「OFF :

The fluid in the PTO clutch is unloaded to the bank through port B.Consequently pressure P2

at passage(2) becomes zero, whereas the pressure at passage (1) is P1. Then the force imposed upon the left side of spool (P1) overcomes the force imposed upon the right side

(P2+spring force), so that the spool is pushed rightwards to connect port P and part A. Therefore no fluid from the pump is branched off to the PTO clutch; that is, all fluid flows to the control valve.

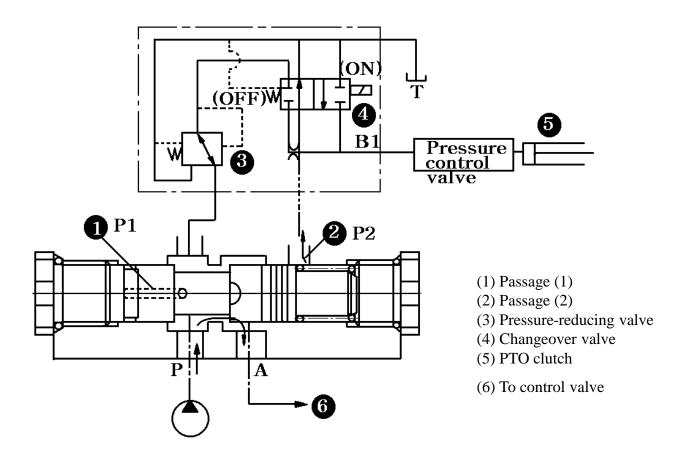
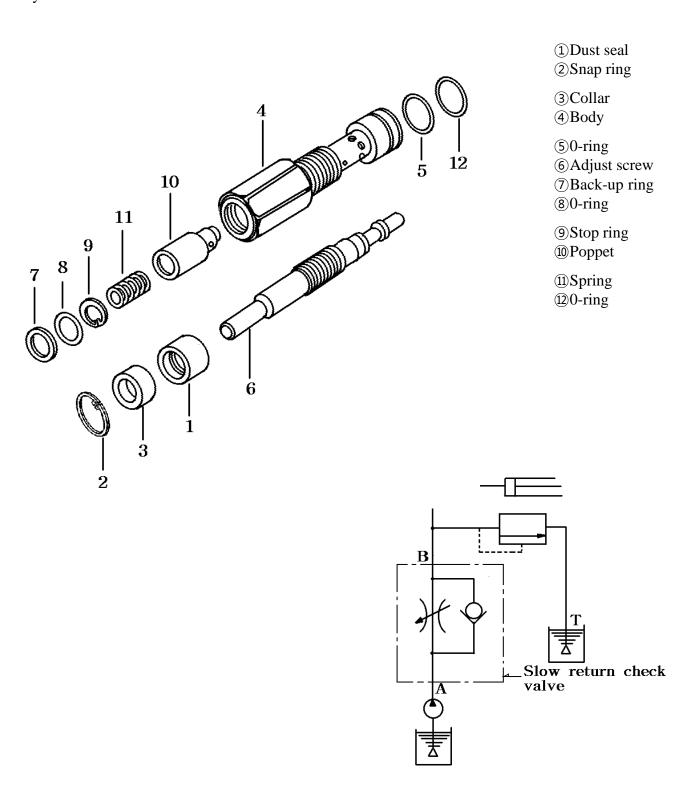


Fig. 9-5 PTO solenoid switch 「OFF」 position

(1) Pressure-reducing valve.

This valve is composed of the spool, spring, and piston and bleeds off the surplus fluid from the pump into the tank by actuating the spool when the fluid pressure exceeds the regulated pressure at port B


(2) Fixed orifice

This orifice controls the fluid flow at B in accordance with the pressure differential between the secondary pressure of the pressure reducing valve and the PTO clutch actuating pressure.

3.FLOW-CONTROL VALVE (SLOW-RETURN CHECK VALVE)

3.1. GENERAL DESCRIPTION

This valve regulates the lowering speed of the lift by controlling the unloading flow from the lift cylinder to the tank.

3.2 OPERATIONS

1) Down position

The fluid from port B pushes up stop ring (9) of poppet(10) until the ring comes into contact with adjust screw(6), as it reaches chamber(R). Consequently, the extent choke (C) is opened is determined by the positioning of adjust screw (6):that is, when adjust screw(6) is screwed in clockwise, the opening of chock(C) decreases and the lowering speed of the lift arm slows down; whereas the opening of choke(C) increases and the lowering speed of the lift is accelerated when the adjust screw is unscrewed counterclockwise. When the adjust screw screwed in completely, the poppet comes into contact with body seat(S) and the choke is closed completely, so the lift arm stops.

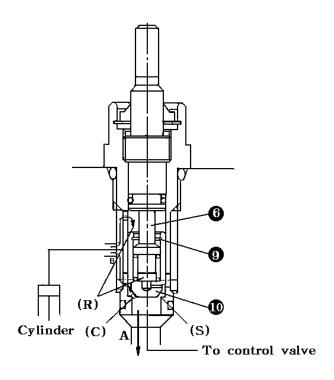


Fig. 9-7 Down position

2) Up position

The flow port A, overcoming the force of spring(11), pushes up poppet (10) and choke(C) is fully opened regardless of the position of adjust screw(6). Thus the fluid flows to port B and the cylinder, which results in raising the lift arm.

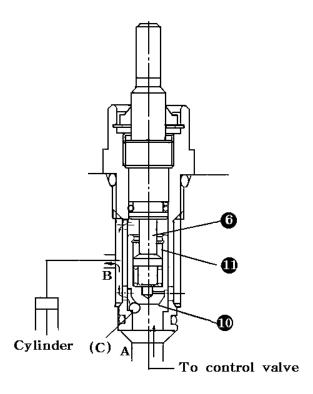


Fig. 9-8 Up position

4. SAFETY VALVE (MAIN RELIEF VALVE)

1) GENERAL DESCRIPTION

This valve regulates the maximum pressure in the whole hydraulic circuit. The regulated pressure can be set with the adjust screw.

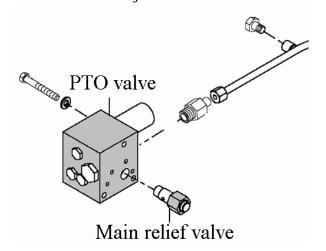


Fig. 9-9 Main Relief valve

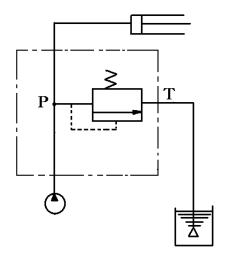


Fig 9-10 relief valve circuit.

2) PRECAUTIONS FOR DISASSEMBLY AND REASSEMBLY

- (1)Tightening torque of lock nut (9)5.0 \sim 6.0 kgf· cm^2 (36.2 \sim 43.4 ft.lbs)
- (2)Install seat(2)and then tap ball(3)(5/16) lightly so as to provide tight seating.
- (3)Wrap the valve threads with sealing tape and tighten the valve up to a specified torque of 5-6Kgf.m(36-43 ft.lbs)
- (4)Before disassembly, the current screwing-in depth of the adjust screw should be written down or memorized for later reference.

3) MEASUREMENT OF THE RELIEF PRESSURE

(1) 3 POINT TO TEST RELIEF PRESSURE

①Remove the plug in the delivery pipe on the right-hand side of the transmission case and install a compression gauge to measure the pressure.

Keep the engine speed at 2600 rpm and shift the position control lever at the highest position.

- 2 Control valve coupler.
- ③ Remove the plug in the hyd. pump flange and engage the pressure gauge and measure it.

Measurement the Pressure must be done 3 times and should be set within specified pressure.

Specified relief pressure 1	160 +5 kgf⋅cm²
-----------------------------	----------------

5.GEAR PUMP

1) GENERAL DESCRIPTION

This pump induces fluid from one side and delivers it from the other side by rotating two gears meshed with each other. The actual delivery is as mentioned below, considering the consequences of fluid temperature and volume efficiency in accordance with revolution speed. That is dual pump system.

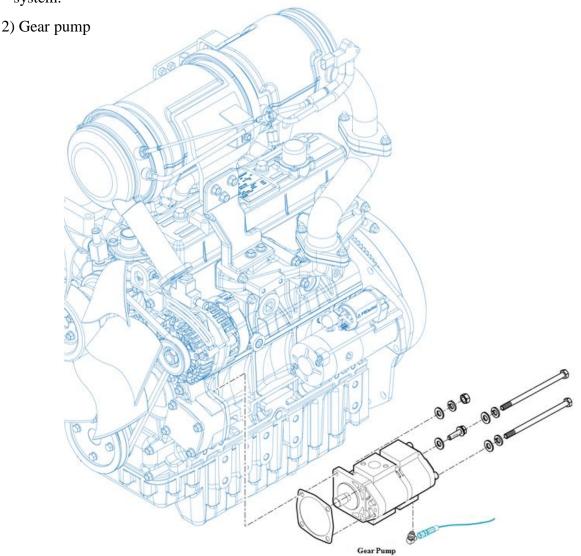


Fig. 9-12 Gear pump

3) OPERATIONS.

This pump induces fluid from one side and delivers it from the other side, by rotating two gears meshed with each other. The actual delivery is as mentioned Fig.9-13, Considering the consequences of fluid Temperature and volume efficiency in accordance with revolution speed.

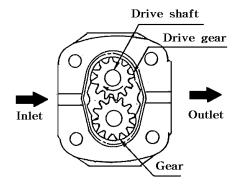


Fig. 9-13 Gear pump

6. FILTER

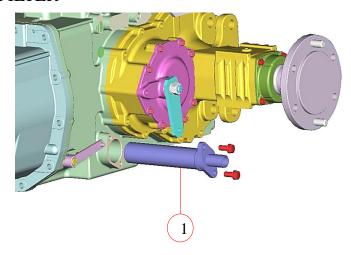


Fig. 9-30 Filter

1)GENERAL DESCRIPTION

The tractor is equipped with oil filters: suction filter(1) for better filtration.

2)SPECIFICATIONS

-Suction filter

Applicable oil	Mahindra hyd. oil
Rated flow rate(ℓ/\min .)	35
Filtration density (mesh)	150 mesh
Filtration area(cm²)	450
Working oil temperature (°C)	-30 ∼130°C

3) REPLACEMENT

Check the O-rings for damage or deformation and replace defective ones. When installing the filters, be sure to install the O-rings properly with grease applied.

SECTION 4. REMOTE HYDRAULIC CONTROL (If equipment)

Maximum flow (\(\ell / \text{min} \)	26
Maximum pressure (kgf/cm²)	400
System pressure (kgf/cm²)(at 26 l/min)	160
A and B port leak(cc/min)	Less than 9
①under a load of 100kgf/cm²	
② Oil temperature:50 °C	
Recommended fluid	Mahindra hyd. oil
Operating temperature range(°C)	-30 ~130°C

1.Remote hydraulic control valve

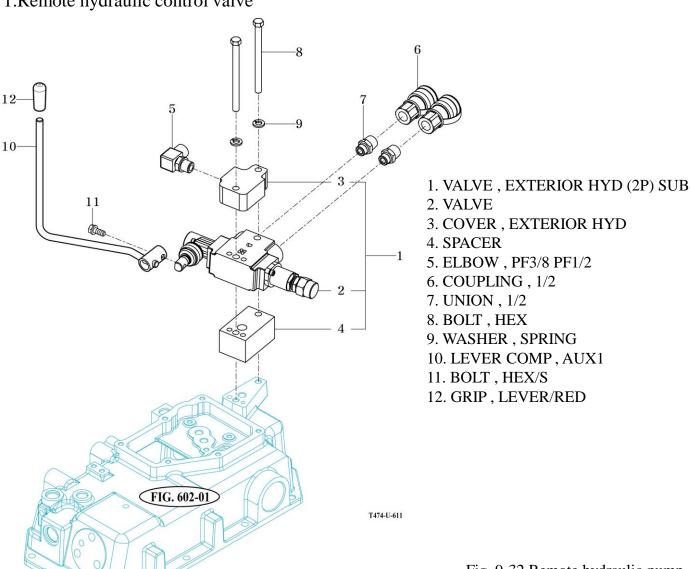


Fig. 9-32 Remote hydraulic pump

SECTION 5. HYDRAULIC SYSTEM

1.HYDRAULIC CYLINDER

- 1) Hydraulic system must be washed clean and care must be taken not to let any foreign substances.
- 2) The O-ring and back-up ring should be coated with grease ahead of time. Install with care so as not to damage them.
- 3) Install the Piston from the cylinder head side.
- 4) The lift arms should be assembled mutually by reference to their matching marks.
- 5) When installing the control valve, apply grease to the O-rings and avoid their dislocation or binding during tightening the valve to the specified torque $130 \sim 180 \text{kgf-cm}$
- 6) The safety valve should be installed levelly, and make sure there is no oil leak through the filter seal . Tightening torque is $900 \sim 1100$ kgf-cm
- 7) The spool should move smoothly after assemble the control valve.
- 8) The lift crank should be installed levelly, and make sure there is no interference through the pipe.

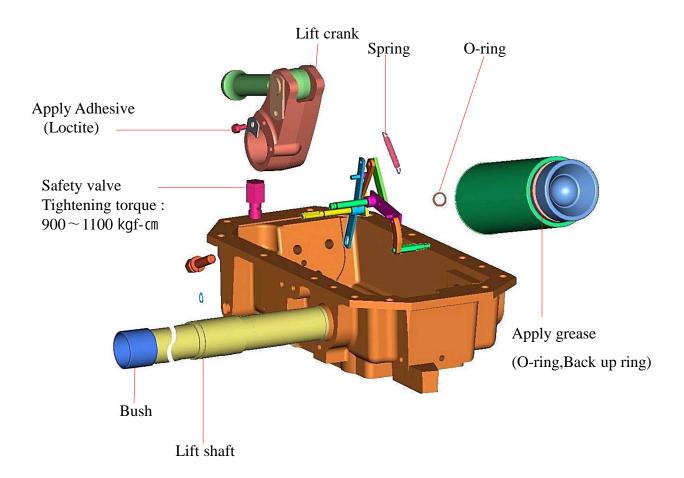


Fig.9-33. Hydraulic cylinder.

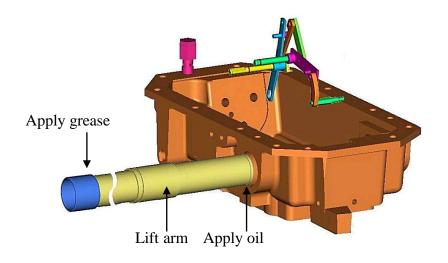


Fig.9-34.Lift arm

- 9)Adjust the angle of the roll bush from horizontal is 30°
- 10) Apply grease to the roll bush.
- 11) Apply grease to the cylinder case and lift arm face Which touched with each other.
- 12) When assemble the lift crank on the lift shaft, mesh their splines using the alignment marks which were put there before disassembly.
- 13) Be sure the lift shaft should be moved smoothly after installation.
- 14) The clearance of lift arm should be less than 3 mm

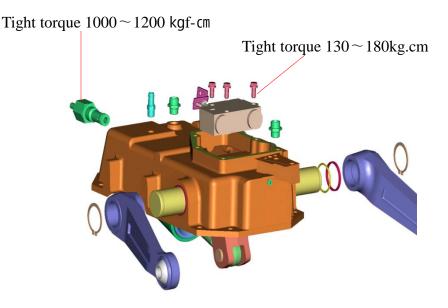
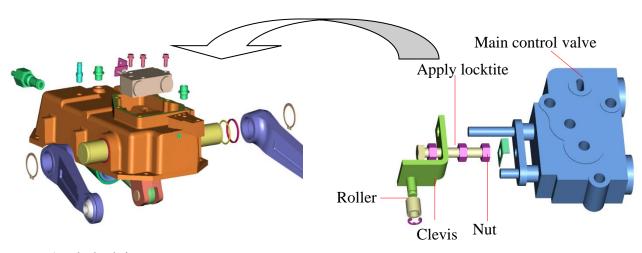
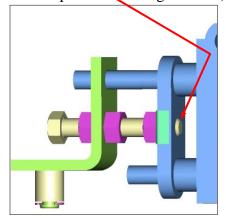
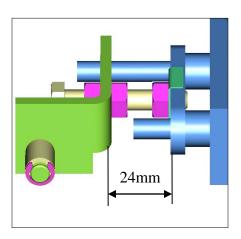



Fig. 9-35 Slow return check valve.

16)Tighten the slow return valve to the specified torque $1000 \sim 1200$ kgf-cm and be sure not to damage the O-ring.


2. LINKAGE (INTERNAL)


- 1)Before installing the linkage, apply grease to relayed drive parts.
- 2)Be sure not to over operate within specified spool stroke(24mm between valve and clevis)

Apply locktite

(Take care not to protrude the edge of Bolt)

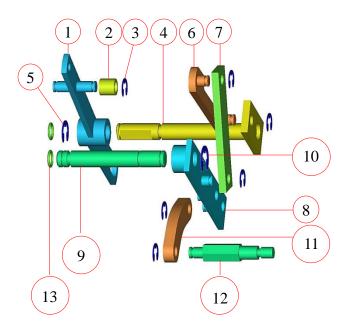


Fig.9-36 Linkage (internal)

- 1.Link valve
- 2.Roller
- 3.E type-stop ring
- 4.Shift(Position)
- 5. E type-stop ring
- 6.Link B
- 7. Link
- 8.Arm Link
- 9.Shift(draft)
- 10. E type-stop ring
- 11.Link(crank lift)
- 12. Pin(link)
- 13.O-ring

3.LINKAGE (EXTERNAL)

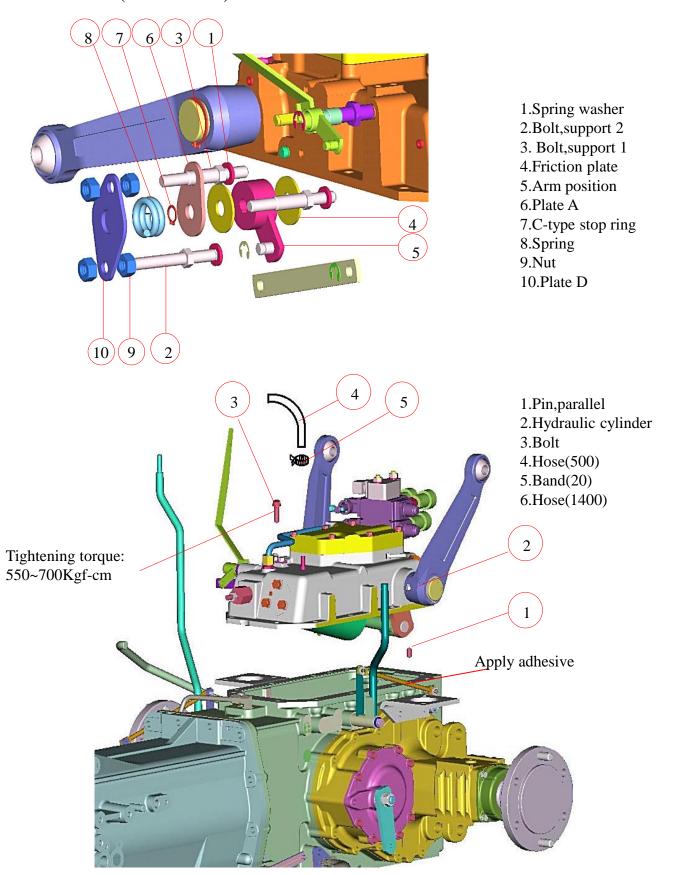
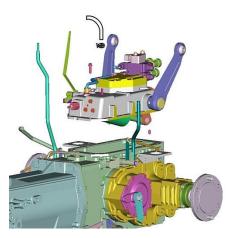
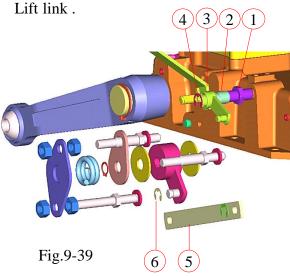
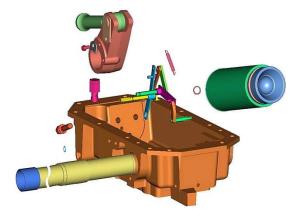



Fig. 9-37 Linkage(external)

4.DISASSEMBLY


1)Remove the cylinder case assembly,referring to relevant paragraph in Chapter 2.


Note: Fig.9-38

Put the cylinder case on a wooden plank to prevent the surface from damage.

2) Remove the link pin and extract the related

3) Remove the cylinder head and extract the cylinder. Then remove the piston from the cylinder.

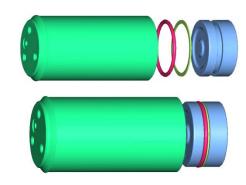
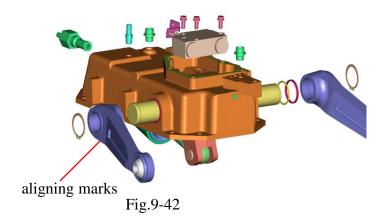
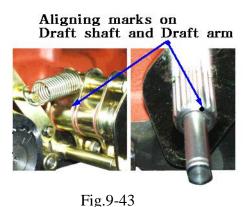




Fig.9-41

4) Applying aligning marks on the Lift shaft and right hand lift arm ,Then remove the arm

5) Applying aligning marks on the Draft shaft
And Draft arm ,Then remove the shaft

F1g.9-43 ing aligning marks on t

6) Applying aligning marks on the Lift crankAnd Bar ,Then remove Bar

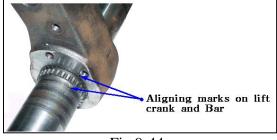


Fig.9-40

7) Remove the set bolt for the lift crank and remove the assembly of the lift shaft and lift arm.

Fig.9-45

- 8) Remove the assembly of the lift crank and piston rod.
- 9) Unhook the each link parts and remove the cover main control valve

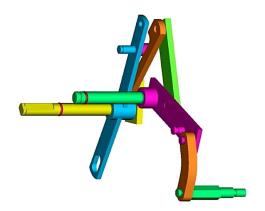


Fig.9-46

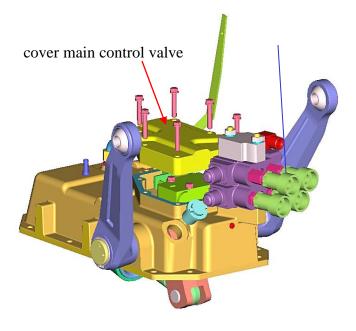


Fig.9-47

10) Remove the bolt and extract the main control valve

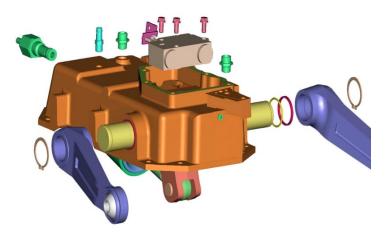
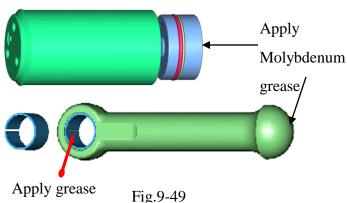


Fig.9-48


11) Remove the following linkages: a.Each linkage b.position control linkage c.Draft control linkage

5.REASSEMBLY

Reassemble in reverse order of disassembly.

5.1 GENERAL PRECAUTIONS

- 1) Hydraulic system parts should completely be free from dust before reassembly.
- 2) All O-rings should be replaced with new ones, which should be lubricated with grease before installation.
- 3) When the lift shaft is removed, the oil seal should also be replaced with a new one.
- 4) Install the piston from the cylinder bottom side. The O-ring and and back up ring should be coated with grease ahead of time. Install with care so as not to damage them.

5) When assembling the lift crank on the lift lift shaft,mesh their splines using the alignment marks which were put their before disassembly

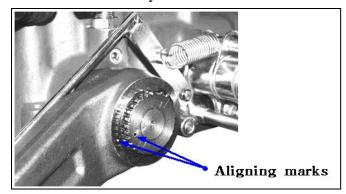


Fig.9-50

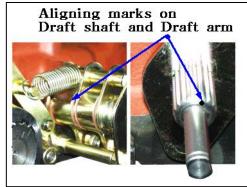


Fig.9-51

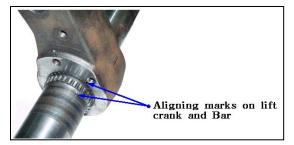


Fig.9-52

6) Tighten the Main valve securely to the specified torque

Tightening torque 130~180 Kg.cm



Fig.9-53

- 7) When installing the control valve, apply grease to the o-rings and avoid their dislocation or binding during tightening the valve to the specified torque
- 8) Tighten the slow return check valve to the specified torque

Tightening torque 1000~1200 Kg.cm

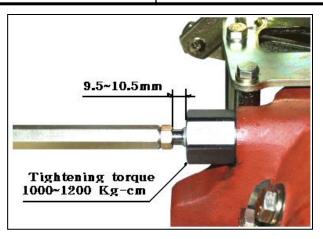


Fig.9-54

9) Tighten the Exterior valve(remote control valve) to the specified torque

Tightening torque 550~700 Kg.cm

BOLT

COVER

VALVE

Fig.9-55

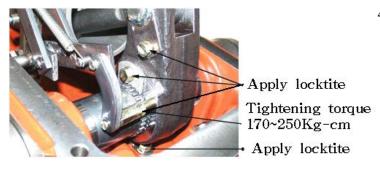


Fig.9-56

3.2 REASSEMBLY STEPS.

- 1) Install the main control valve
- 2) Install the clevis comp.

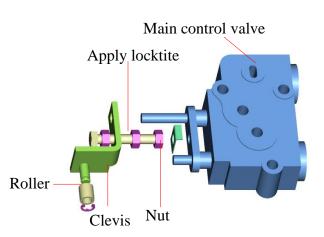


Fig.9-57

Note:

After installing the clevis to main control valve ,make the installed length of the set the body and plate to be 10mm(Fig.9-57)

3) Install the each link parts.

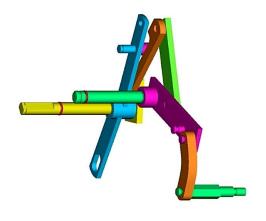


Fig.9-58

4) Install the lift crank temporarily along with the feed back link. Install the piston on the lift crank.

Fig.9-59

5) Install the lift shaft and lift crank together in accordance with the aligning marks on them. (Fig.9-23). Apply grease to the roll bush.

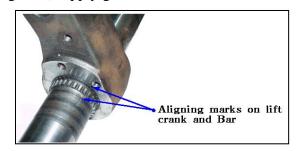


Fig.9-60

6) Drive the oil seal onto the lift shaft and install the lift arm

Note:

When installing the oil seal, take care not to allow the oil seal lips to be damaged by the splines of the lift shaft.

7) Install the cover main control valve and Then install the remote control valve.(If equipment)

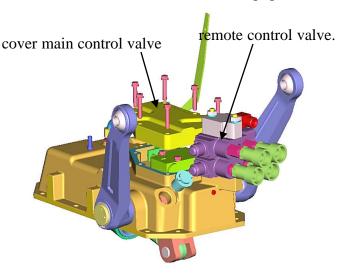


Fig.9-61

6. ADJUSTMENT OF THE LINK MECHANISM.

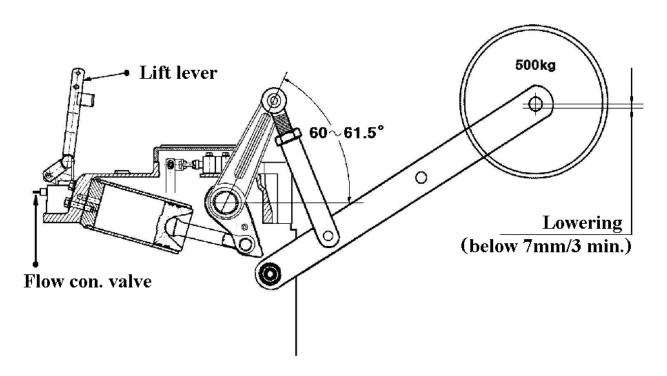


Fig.9-62

1) Adjustment of the position control link mechanism

Place the cylinder case assembly upside so that the lift arm can be moved freely

Point 1.Set the lift crank to the top position. Adjust the top position installed length of the body and plate is about 10mm or determine the position where the angle of the lift arm from horizontal is 60~ 61.5°.

Fig.9-63

Point 2. Fix the clearance between the body and plate on the control valve and the casing spool to be 24 mm (Fig.9-64), while the main spool is set in the neutral position.

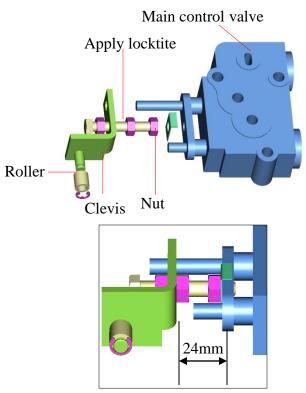


Fig.9-64

Point 3.Set the feed back link so that there is no play by the adjusting nut.

Point 4. Apply an locktite to adjusting Nut.

Fig.9-65

Thus the adjustment of the position control linkage is completed.

2) Adjustment of the draft-control link mechanism

Point 1.Shift the draft-control lever to the top position and the position-control lever to the bottom position.

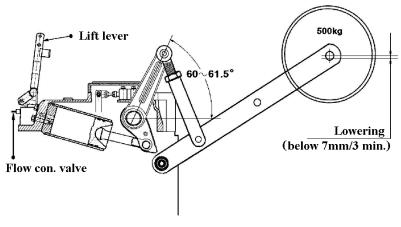


Fig.9-66

Point 2. With position (A) is 90° together in accordance with Shifting the draft-control lever to the top position and the position-control lever to the bottom position.

Adjust by loosening the lock nut.

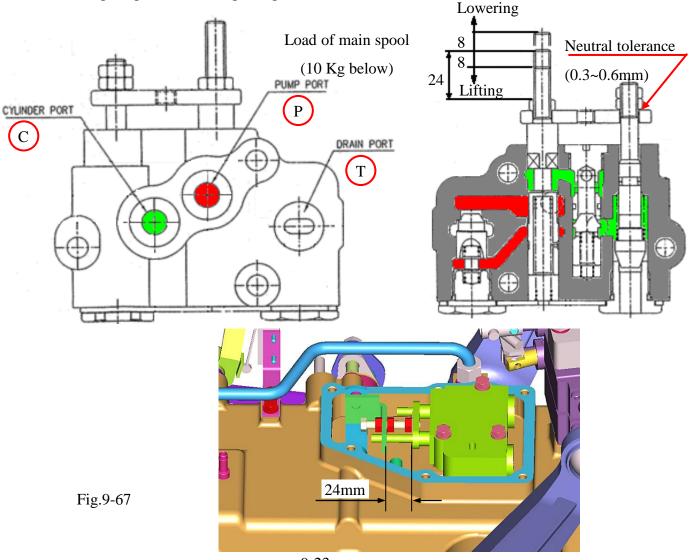
Thus the adjustment of the draft-control link mechanism is completed.

7. MAIN CONTROL VALVE

7.1 GENERAL DESCRIPTION

This valve controls the lifting and lowering operation of the hydraulic cylinder. It has especially been developed to control the working height of the implement. It consists of a feed back valve; direction control valve, flow-control unloading valve, and holding check valve.

7.2 SPECIFICATIONS


Maximum operating pressure	165 Kgf. /m²
Maximum flow	45 liters /min
C-port leaks	5 cc/min below
	(Fluid temp : 50°C: Pressure :140 Kgf/(m²)

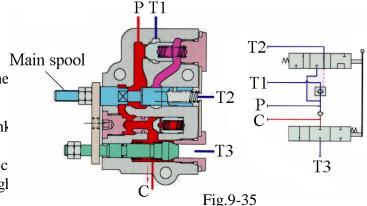
7.3.CONSTRUCTION

1) Main spool

it consists of a spool, spool head, and snap ring E and has three functions.

- a. It opens and closes passages P to C and C to T and controls the passage wall area successively.
- b. It converts unloading pilot pressure to C-port pressure or tank pressure
- c. It turns the pilot pressure of the pilot spool on or off.

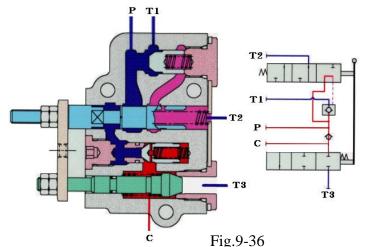
7.4 OPERATION


Port p means "pump port", and is connected to the pump, while port C means "Cylinder port", and is connected to the cylinder. Drain ports T1 to T4 are connected to the tank.

1) Neutral position

In the NEUTRAL position, Spring chamber of unloading valve connected to TANK(T2),

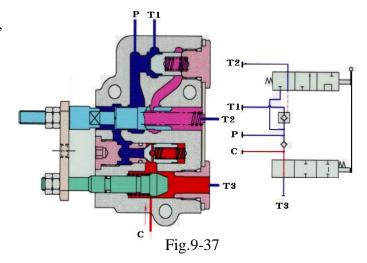
Therefore the force imposed upon the right hand side of the unloading valve, then the fluid from the pump flows into TANK(T1).


The pressure in chamber becomes equal to the tank pressure. Consequently the fluid in the C port becomes high, then the check valve and main chec valve completely closes the cylinder circuit enough to hold the piston steady.

2) Lifting position

When the main spool is shifted to the lifting positio Passages to the Tank(T2) are closed with unloading spring and the Fluid from the pump flows into unloading valve spring., therefore the force impose up the left-hand side of the unloading check valve, Consequently the fluid in the T1 port becomes to close the unloading.

The pump delivery fluid pressure open the loading check valve, then through C port the pump pressure flows into hydraulic cylinder to lift up the lift arm.



3) Lowering position

When Main spool is shifted to the lowering position, Unloading spring is connected to the Tank(T2), and the force imposed up the right hand side of the unloading check, therefore the fluid from the pump flows into the Tank(T1).

Consequently the force imposed up the left hand side of the main check valve, which is connected with Plate-B to open the T3 port.

By this action, the fluid from the cylinder flows out and into the tank through chamber, so the piston is released

SECTION 6. TROUBLESHOOTING

Problems	Causes	Countermeasures	
1.Lift does	1) Insufficient engine speed	Raise engine speed slightly	
not rise	2) Insufficient transmission oil	Maintain oil level by replenishing with the same kind of oil	
	3) Air taken in through suction	Tighten securely or replace broken parts.	
	4) Clogged suction filter	Clean.	
	5) Broken or poor hydraulic pump	Inspection pump and repair or replace if necessary.Pay particular attention to shaft seal because a broken seal sometimes intakes air.	
	6) Poor link mechanism	Inspect,adjust,repair,or replace if necessary.(Refer to section 3)	
	7) Excessive load on lift	Decrease load	
	8) Broken cylinder	Replace	
	9) Too low viscosity of transmission oil	As it will cause oil leaks or internal wear,replace with gear oil of SAE80	
	10)Maladjusted relief valve	Readjust. (Cracking:refer to the specifications)	
	11)Excessive internal leaks	Inspect cylinder and valves.Replace damaged seals,and repair. (Check each part systematically)	
	12)Broken flow divider	Disassemble and wash spool clean.	
	(Stuck sequential valve spool)	If it is damaged seriously,replace it as an assembly.If damage is minor,correct surface with oil stone and finish by lapping.	
	13)Broken control valve (Even when spool is shifted to up po	sition,lift does not rise)	
	①Stuck compensator plunger (unloading valve 1)	Lap after repairing flaws with oil stone	
	②Clogged orifices or slanted orifices in pilot passage.	Clean them with compressed air or a sharp point.	
	③Stuck poppet(unloading valve 2)	Correct minor flaws with oil stone	
	Bitten or stuck check valve plunger	Lap after repairing flaws with oil stone	
	14)Broken slow-return check valve		
	①Stuck poppet	Lap after disassembling, cleaning, and repairing flaws with oil stone	

Problems	Causes	Countermeasures	
2.Too low rising speed of	1)Above causes can also be possible	Repair according to above instructions.	
lift	2) Too small a spool stroke in control valve	Inspect,readjust,or replace link mechanism if necessary.	
	3)Broken compensator spring (unloading valve 1) in control valve	Replace spring.	
	4)Stuck poppet (unloading valve 2)	Correct minor flaws with an oil stone	
3.Lift lowers even when adjust knob	1)Stuck poppet	Lap after disassembling, cleaning, repairing flaws with oil stone	
is closed fully with adjust Handle	2)Poor valve seat	Replace valve	
(While engine is stopped)	3)Poor 0-ring	Replace	
4.Lift does not lower	1)Slow-return-check valve knob is turned to the lock position	Turn knob to fast position	
	2)Stuck poppet of slow- Return-check valve	Lap after disassembling, cleaning,repairing flaws with oil stone	
	3)Seized lift shaft	Apply grease and repair or replace bushings or shaft if necessary.	
	4)Stuck main spool	Lap lightly after disassembling, cleaning, and repairing flaws with oil stone or replace as an assembly.	
5.Too slow lift lowering speed	1)Above mentioned causes can also be possible.	Repair or adjust according to instructions mentioned above.	
	2)Insufficiently lowered control lever	Lower lever sufficiently	
	3)Excessively closed slow- return check valve	Open valve sufficiently	
6.When hydraulic control lever is	1) Maladjusted lever stopper check valve	Readjust lever stopper guide position	
raised,relief,valve beeps.	2) Poor link mechanism	Inspect,readjust,repair,or replace link mechanism if necessary.	
7.Fluid overheating	1)Excessively high working pressure	Inspect and adjust	
	2)Too high or low viscosity of working fluid.	Replace with fluid of adequate viscosity.	
	3)Insufficient fluid	Maintain specified level by replenishing	

Problems	Causes	Countermeasures
8.Pump noise	Partially clogged suction filter or suction piping.	Clean.
	2) Air inhaled through suction piping and intake pipe connections for pump	Inspect and retighten.
	3) Loosened pump cover tightening bolts.	Inspect and retighten
	4) Too rich oil viscosity	Replace with fluid of adequate viscosity.
	5) Broken or worn pump parts	Inspect and replace defective parts.
9.Excessive wear,deflection or	1) Dirty fluid	Eliminate foreign matter and inspect filters.
damage of pump	2) Circuit pressure exceeds pump capacity	Adjust relief valve or replace if necessary
	3) Oil-less operation due to Insufficient oil quantity	Inspect transmission oil level and maintain specified oil level by replenishing. In either case, clean, and repair pump parts and replace damaged ones if necessary.
10.Oil leaks outside pump	Broken or fatigues oil seal or O-ring	Replace
11.Oil leaks from piping or joints	Poorly connected piping	Inspect, clean, and eliminate dust. Repair flaws with oil stone if necessary. Retighten.
	Poor O-ring	Replace
	Broken piping	Replace with a new one after washing clean related parts.
12.Oil leaks around lift arm	Poor oil seals	Replace oil seal or bushing if necessary
13.Independent PTO clutch slips or is too slow in engaging	Clogged fixed orifice of Flow divider	Disassemble and wash clean.
	2) Port B regulated pressure is too slow	Inspect and reset pressure
	3) Clogged PTO pressure control valve or stuck	Disassemble and wash clean. Repair flaws with oil stone if necessary or replace with a new one.
	4) Poor flow divider solenoid valve	Disassemble and repair or replace with new one if necessary .

Problems	Causes	Countermeasures	
14.Independent PTO clutch is too	Stuck pressure-reducing valve spool	Lap after correcting flaws with oil stone	
quick in engaging	2) Fatigued or broken pressure- reducing valve spring	Replace.	
	3) Worn or broken sealing of PTO clutch	Replace	
	4) Worn friction plates or driven plates	Replace	
	5) Overheated fluid	Refer to paragraph for "fluid overheating"	
	6) Port B regulated pressure is too high of Flow-divider	Inspect and reset pressure	
	7) Stuck pressure-reducing valve spool	Lap after correcting flaws with oil stone	
	8) Clogged orifice in pressure- reducing valve spool	Clear clogged with compressed air or with a sharp point.	

Chapter 10 Electrical accessory and instruments

SECTION 1. GENERAL DESCRIPTION	10-1
SECTION 2. SPECIFICATIONS	10-1
SECTION 3. BATTERY	
1.1. Inspection	10-2
1.2. Inspection of electrolyte specific gravity	10-2
1.3. Battery charging	10-2
1.4. Battery testing chart	10-3
SECTION 4. Meters and switches	
1. Meters	10-5
1.1 Removal	10-5
1.2 Tacho/Hour meter	10-5
1.3 Fuel gauge and fuel gauge sensor	10-5
1.4 Thermometer	10-6
2. Starter switch	
3.Combination switch	10-7
4.Stop light switch	
5.Relay unit	10-8
6.Fuse	10-8
7.Controller Unit	
8.Trailer socket(7P)	
SECTION 5. EARTHING POINT	10-12
SECTION 6. WIRING DIAGRAM	10-13
SECTION 7 TROUBLESHOOTING	10_15

Chapter 10 Electrical accessory and instruments

SECTION 1. GENERAL DESCRIPTION

The basic electrical system of tractors consists of the engine cranking system, battery charging system, lighting system, meters, switches, etc.

For further information concerning the engine cranking equipment and battery charging equipment, please refer to the engine manual.

The battery is a power source to activate the engine cranking system, lighting system, and other electrical equipment. The lighting system is used to activate the illumination lights, indicators, and signal lights. The meter is a device that enables the operator to be aware of the present operating conditions; oil pressure gauge, water temperature gauge (thermometer), fuel gauge, etc. are installed. All the controls, meters, and indicators are arranged around the operator's seat for easy Maneuverability readability, and convenience.

SECTION 2. SPECIFICATIONS

MODEL		T475HST		
	PART NAME		Specification(w)	Quantity
1.lighting	Head	lights	55/60	2
system	Front combination	Turn signal lights	21	2
	lights	Small lights	5	2
	Rear combination	Turn signal lights	21	2
	lights	Stop lights	21	2
		Tail light	5	2
2. Monitoring	Meter assembly	Hour meter	-	1
system		Fuel gauge	-	-
		Thermometer	-	-
		Pilot light	(3.4)	15
	Horn		-	1
3.Fuses	Fuses(A)	In main fuse box	15	5(2)
		(with spare fuse)	10	9(2)
	Fusible links	Main Fuse	50A	1
		Glow Fuse	60A	1
		Charge Fuse	60A	1
4.Battery			12V80AH	1

SECTION 3. BATTERY

1.INSPECTION

1.1 INSPECTION OF ELECTROLYTE LEVEL

As the battery repeats charging and discharging during operation. The water content in the electrolyte gradually evaporates, and as a result, the level should be inspected at the specific level; replenish with distilled water.

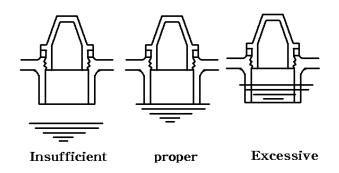


Fig.10-1 electrolyte level

1.2 INSPECTION OF ELECTROLYTE SPECIFIC GRAVITY

The specific gravity of the electrolyte lowers as the battery discharges, so the battery condition can be determined by measuring the specific gravity. The specific gravity can be measured generally with a suction type hydrometer which must be read properly as shown in Fig. 10-2

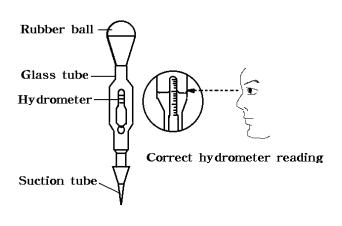


Fig.10-2 electrolyte gravity

Note:

When the distilled water is added, charge the battery to mix it well into the electrolyte before measuring the specific gravity.

a. Temperature correction of the hydrometer reading

The specific gravity of the battery electrolyte(diluted sulfuric acid) varies with the temperature of the electrolyte at a rate 0.0007 specific gravity point for each 1°C change in temperature. Therefore, when the specific gravity of the electrolyte in the battery is measured with a suction type hydrometer, a temperature correction should be made, using the following formula to permit the direct comparison of the measured valve with the standard specific gravity at 20 °C.

 $S_{20}:St+0.0007(t-20)$

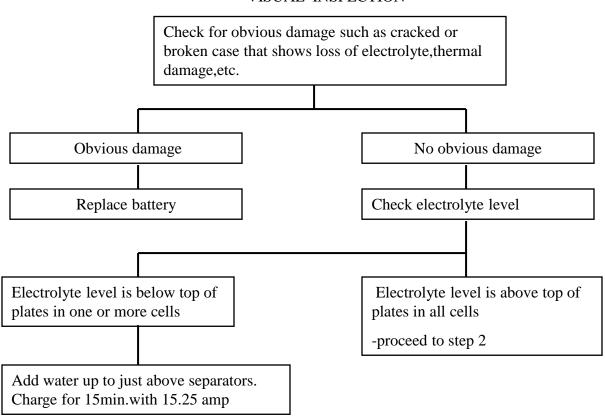
S₂₀:Specific gravity at standard temperature of 20 °C.

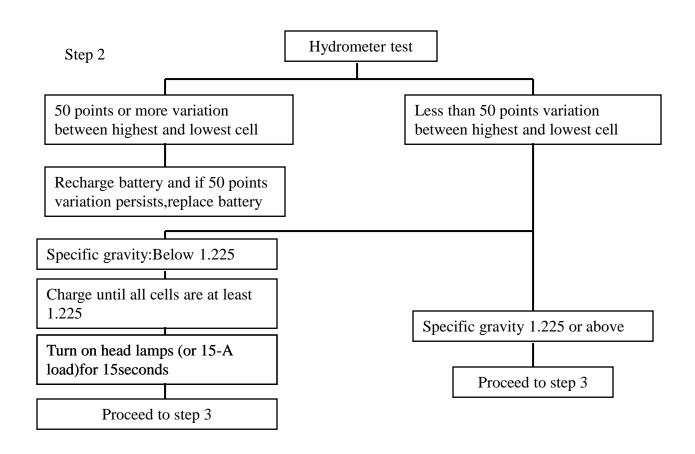
t: Temperature of the electrolyte at the time of measurement

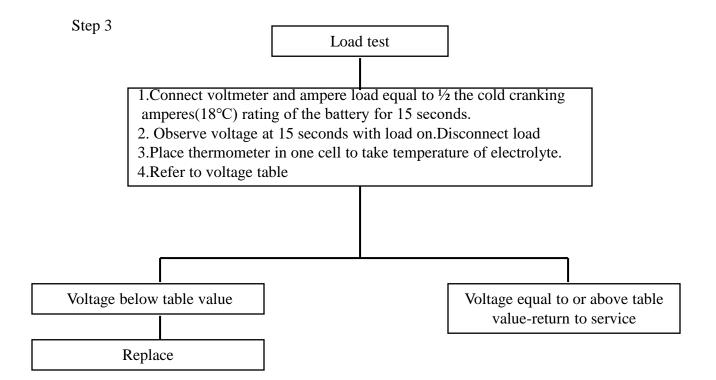
St: Specific gravity of the electrolyte measured at t °C.

1.3 BATTERY CHARGING

If the specified gravity of the battery electrolyte in lower than 1.220 (at 20 °C), the battery should be recharged, because leaving an undercharged battery without recharging it will lead to permanent battery damage. The battery is subject to self-discharge at a rate as shown in the table below. Therefore it should be recharged from time to time when storing the battery unused for a long period of time.

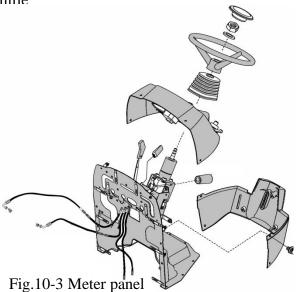

When recharging the battery, wash clean the outside of the battery case and the battery posts. Check the level of the electrolyte in each cell and replenish with distilled water as necessary.


Temperature	Self-discharge rate per day (%)	Decrease in specific gravity per day
30 °C	1	0.002
20 °C	0.15	0.001
5 ℃	0.025	0.005


1.4 BATTERY TESTING CHARTS

Step 1.

VISUAL INSPECTION



Voltage table		
Estimated electrolyte temperature	Minimum required voltage under 15 sec.load (Use ½ these values for 6-V batteries)	
70 °F (21 °C) and above	9.6	
60 °F (16 °C)	9.5	
50 °F (10 °C)	9.4	
40 °F (4 °C)	9.3	
30 °F (-1 °C)	9.1	
20 °F (-7 °C)	8.9	
10 °F (-12 °C)	8.7	
0 °F (-18 °C)	8.3	

SECTION 4. METERS AND SWITCHES

1.METERS

- 1.1 Removal
- a. Disconnect the cable from the negative post.
- b. Remove the philips screw which hold the meter panel and lift up the panel assembly a little

c. Then the meter panel can be detached by removing the wire harness couplings.

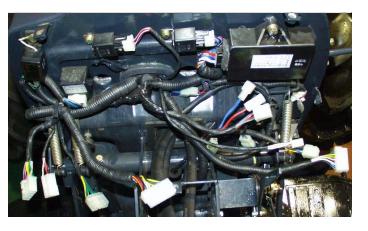


Fig. 10-4 Wire harness

1.2 Tacho/hour meter and sensor

a.Construction

An electric tachometer is employed along with a Tachosensor. The tach/hour meter converts engine revolutions to electric signals, which is sent to the tachometer. The tachometer displays the engine revolutions visually. The tachosensor generates 14 pulses per one engine revolution.

The generated pulses are converted into voltage output through a converter. Then the voltage is divided into three different phase coils through a IC circuit. The tachometer pointer is swung by the compound magnetic field generated by the three point.

b. Inspection

-Tachometer

The allowable error of a tachometer reading is specified as shown on the table below. If the reading deviates from the specified value. replace the meter assembly.

Engine speed(rpm)	1000	2500
Allowable error(rpm)	±150	±150

1.3 Fuel gauge and Fuel gauge sensor

a.Construction

When the fuel tank is full, the float is at the top and has moved the variable resister to a position of least resistance. This feeds maximum current into the meter circuit and the pointer swings fully to the F position. Consequently when the fuel level in the tank is low, everything acts in reverse.

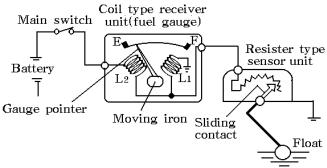


Fig.10-5 Fuel gauge sensor

b.Inspection

-Fuel meter

Connect the fuel gauge to form a circuit with the resisters as shown Fig.10-6 and check to see if the gauge pointer swings to each position: F.1/2 and E by changing the resistance value. If it does not, change the gauge assembly.

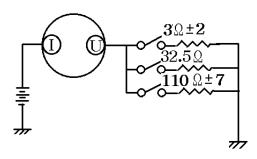


Fig.10-6

-Fuel gauge sensor(variable resistor)

Check each resistance value with a tester at each float position as shown in Fig. 10-7.if the measured values are deviated from respective specified values, replace the sensor assembly.

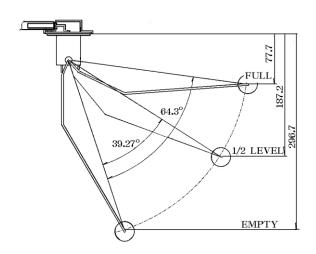


Fig.10-7

Standard pointer position	F	(1/2)	Е
Regulated resistance(Ω)	3	32.5	110
Allowable $error(\Omega)$	±2	(±4)	±7

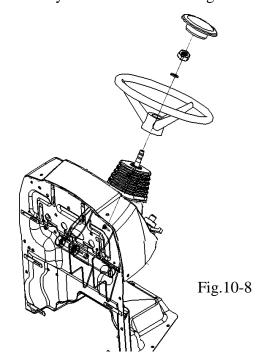
Note:

- 1) Figures in parentheses are reference value
- 2) Inspect each position in order F to E
- 3) Read values in three minutes.

1.4.Thermometer

a. Construction

This is the same moving magnet type meters as the fuel gauge. As the coolant temperature becomes higher, the resistance in the thermo unit(sensor) become lower, which results in more current to the meter circuit and swinging the meter pointer to the high temperature side on the scale. Of course, as the coolant temperature become lower, everything acts in reverse.


b. Inspection

Normally the thermometer resisters higher values as the coolant temperature rises after the engine is running. If it does not, check the wiring first. If the wiring is normal. Replace assembly.

2. STARTER SWITCH

(1) Removal

- a. Remove the dash cover(Upper)
- b. Remove the ring nut holding the starter switch using a conventional screw driver.
- c. Pull out the key switch as shown in Fig.10-8

(2) Inspection

a. The main switch circuit, switching positions, and terminals are as shown in the figures. Check the continuity across respective terminals referring to the switch circuit diagram. Replace a defective switch as an assembly

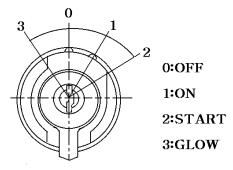


Fig.10-9

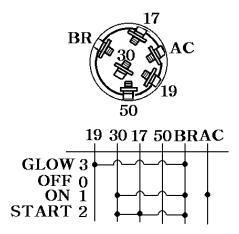


Fig.10-10

3. COMBINATION SWITCH

- 1) Removal
- (1) Remove the meter panel
- (2) Remove the light switch knob and turn signal switch lever.

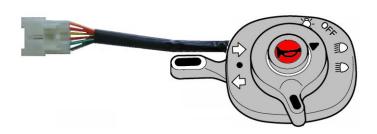


Fig.10-12

(3) Release the ring nut with a conventional screw drive(-) and remove the combination switch.

2) Inspection

Each switch circuit is as shown, so check each switch for a continuity across respective terminals with a tester. Replace a defective switch as an assembly.

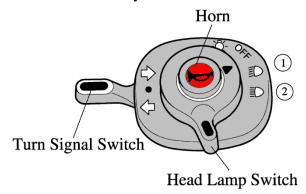


Fig.10-13 combination switch

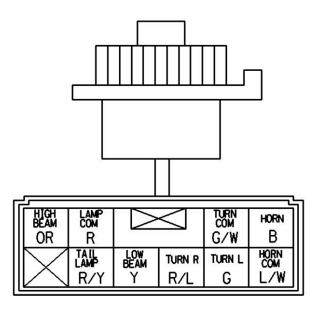


Fig. 10-14 Harness socket

-Lighting

Color	RY	Y	BR	0
OFF **2	B1*1	Т	1	2
1	•		•	
2	•	•		•

*1:Terminals

**2: Switching positions

-Flasher

Color	G (Green)	WG (White/	GB (Green/
2 2 2 2	(Green)	,	,
		Green)	Black)
	B2*1	R	L
1**2	•	•	
OFF			
2	•		•

*1:Terminals

**2: Switching positions

-Horn switch

Color code	В	LW
	B1*1	Н
Free**2		
Push	•	•

*1:Terminals

**2: Switching positions

4. STOP LIGHT SWITCH

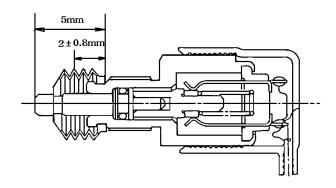


Fig.10-15 Stop light switch

Capacity	15 A (DC12V)
Stroke to ON	2 ±0.8mm
Total stroke	5mm

5.RELAY UNIT

START RELAY GLOW RELAY

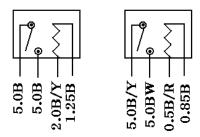


Fig.10-16 Relay unit

6. FUSE

Fuses are installed in the main fuse box and one for the headlights. Three fusible links are installed to prevent the wiring from burning due to a short circuit.

Fig.10-17 Fuse box

Each fuse is connected as follows

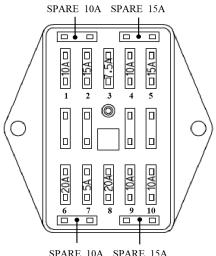


Fig.10-18

1	Controller	10A
2	Trailer	15A
3	USB Charge	7.5A
4	Stop Lamp	10A
5	Turn Signal Lamp	15A
6	Hazard	20A
7	Meter Panel	5A
8	Head Light / Horn	20A
9	Fuel Pump	10A
10	Power Socket	15A

The circuit has 8 blade type fuses in its wiring circuit. When a fuse has blown replace it with one of the same value.

Normal B

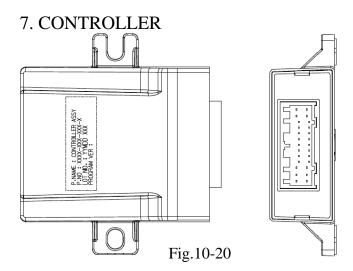

Blown out

Fig.10-19

Note:

Using a large capacity fuse or wire burn out the wiring system.

Use fuse tongs to replace fuses

Capacity	DC12V
Operating range	DC10~16V
Operating temperature	-30~70°C

1.Function

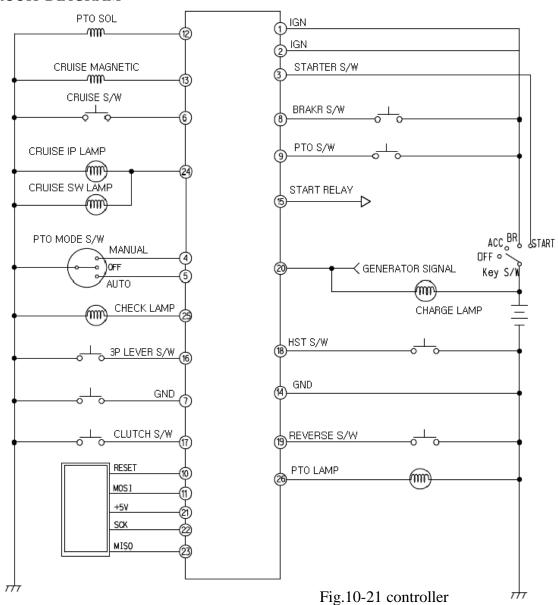
a. Engine stop

When below condition is performed, Engine will be stopped within 10 ± 3 sec.(1^{st})

No	Seat S/W	Brake S/W	PTO S/W	HST S/W
1	OFF	ON	ON	ON
2	OFF	ON	ON	OFF
3	OFF	OFF	ON	ON
4	OFF	OFF	OFF	ON
5	OFF	OFF	ON	OFF
6	OFF	OFF	OFF	OFF

Note:

When the seat S/W is Off position, engine will stop after 3 seconds.


b. Engine Start control

Engine can be started on the condition of Brake S/W ON ,HST S/W,and PTO S/W OFF Position

c. Cruise control

When Cruise momentary S/W is operated as Procedure OFF→ON→OFF.it will change the output of Cruise magnetic.And ON output relay will operate to light the cruise lamp.

2. CIRCUIT DIAGRAM

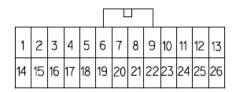


Fig.10-22 connector

10.Reset	19.Reverse S/W
11.MOIS	20. Generator charger signal
12.PTO SOL	21.+5V
13.Cruise magnetic	22.SCK
14.GND	23.MISO
15.Starter relay	24.Cruise lamp
16.3P lever S/W	25.Check lamp
17.Clutch S/W	26.PTO lamp
18.HST S/W	
	11.MOIS 12.PTO SOL 13.Cruise magnetic 14.GND 15.Starter relay 16.3P lever S/W 17.Clutch S/W

8.Trailer socket (7P)

A hella's 7-pin trailer socket is equipped as a standard equipment. Lamp on a trailer can be operated through the socket.

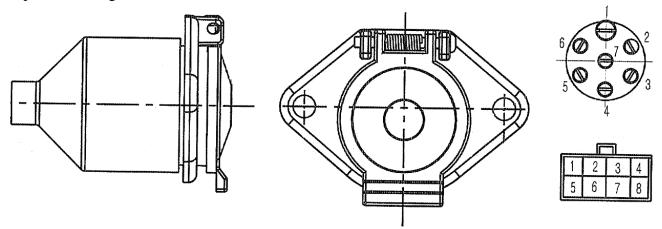


Fig.10-23

Socket No.	Description	Color	Specification	Wire Housing
1	Earth	W	AV 1.25	1
2	Small light(Tail light)	В	AV 1.25	2
3	Turn signal (LH)	Y	AV 1.25	3
4	Stop Light	R	AV 1.25	4
5	Turn signal (RH)	G	AV 1.25	5
6	Rear Light (License plate)	Br	AV 1.25	6
7	Reserve light	L	AV 1.25	7

Note:

Lamp on the trailer should be of the same size or smaller than those on the trailer.

SECTION 5. EARTHING POINT

Fig.10-24

1) The inside surface of the frame comp. Where the battery cable is to be installed.

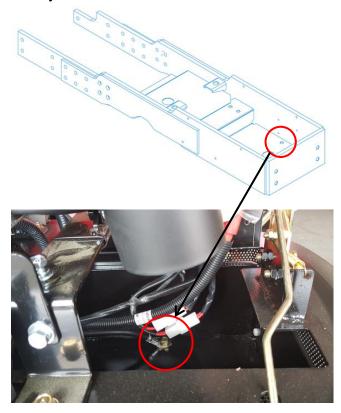
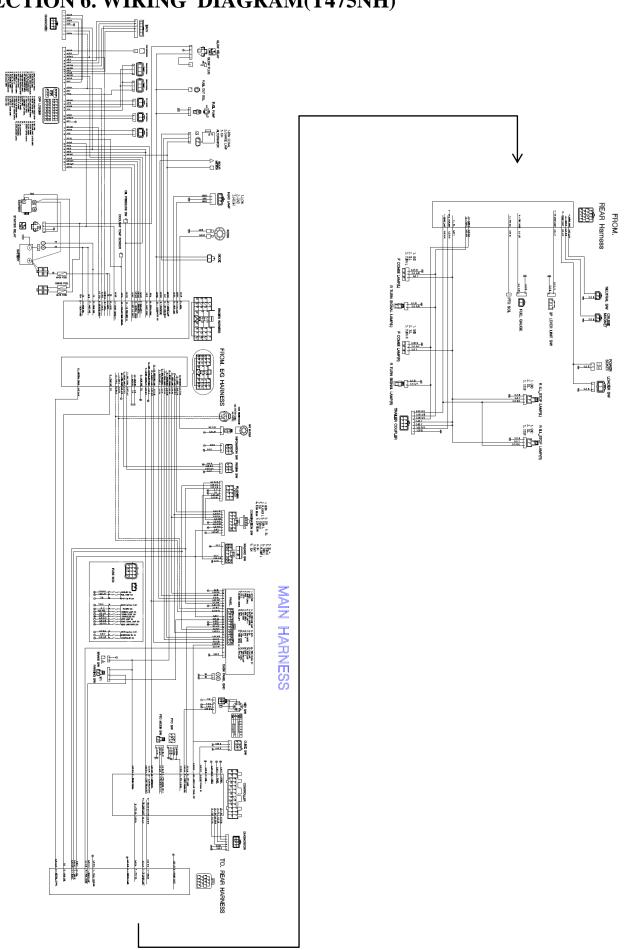
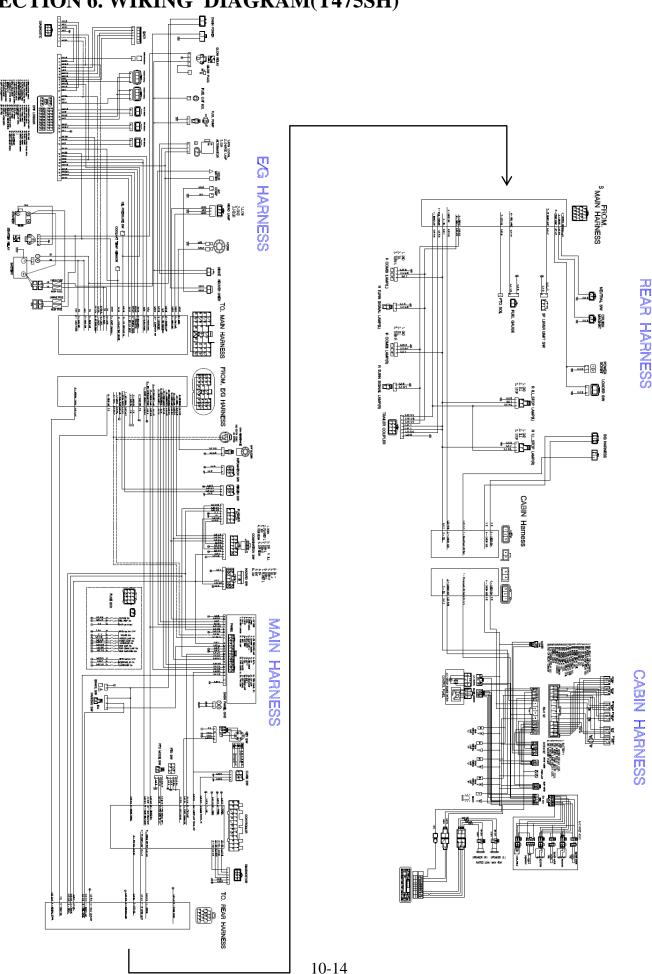




Fig.10-25 Battery cable

SECTION 6. WIRING DIAGRAM(T475NH)

SECTION 6. WIRING DIAGRAM(T475SH)

SECTION 7. TROUBLESHOOTING

Important: Whenever effecting a repair the reason for the cause of the problem must be investigated and corrected to avoid repeating failure.

The following table lists problems and their possible causes with the recommended remedial action

1. LIGHTING SYSTEM

Problems	Causes	Countermeasures	
	Discharged battery	Check battery and charge or renew	
	Loose or defective battery cable connection	Inspect, clean, and tighten connection	
Several or all	Loose wire harness connectors	Check and ensure connectors securely engaged	
lights do not illuminate	Burnt out fuse or fusible link	Inspect and renew.Check circuit before re- connecting power	
	Faulty wiring	Check lighting Circuit wiring and repair or renew	
	Defective light switch	Check and renew	
	Several light bulbs burnt out due to defective voltage regulation	Check and renew voltage regulator (Alternator)	
Individual	Burnt out bulb	Check and renew	
lights do not illuminate	Defective or corroded bulb contact	Inspect, clean or renew	
mammate	Burnt out fuse	Inspect and renew.Check circuit before reconnecting power	
	Loose or broken wires	Inspect ,secure,repair,or renew wiring	
	Poor ground connection	Inspect, clean, and tighten ground connection	
Lights burnt out repeatedly	Faulty voltage regulator	Check and renew voltage regulator (Alternator)	
Turn signal lights do not	Blown fuse	Inspect and renew.Check circuit before reconnecting power	
illuminate	Inoperative flasher unit	Check and renew	
	Inoperative turn signal switch	Check and renew	
	Defective wiring or connections	Inspect circuit, clean, and tighten connection. Repair or renew wiring if necessary	

Problems	Causes	Countermeasures
Individual	Burnt out bulb	Check and renew
turn signal light does not	Corroded or loose bulb contacts	Inspect, clean, and renew
illuminate	Poor ground connection or damage wiring	Inspect, clean, and tighten connections or renew wiring
Turn signal	Faulty bulb	Check and renew
pilot light is inoperative	Defective flasher unit	Check and renew
moperative	Faulty wiring or connections	Inspect, clean, and tighten connections or renew wiring
Stop lights	Inoperative stop light switch	Check and renew
does not illuminate	See "Individual lights do not illuminate"	See "Individual lights do not illuminate
Inoperative work light	Work light switch is not turned on	Ensure work light illuminates
	See "Individual lights do not illuminate	See "Individual lights do not illuminate

2. INSTRUMENTATION

Problems	Causes	Countermeasures
Inoperative or erratic meters	Loose or broken wiring	Inspect Circuit, tighten connections or renew wiring
	Defective meters	Inspect and renew
	Defective sensors	Check and renew
	Defective Voltage regulator	Check and renew voltage regulator (Alternator)
Monitor light does not illuminate	Loose or broken wiring	Inspect circuit,tighten connections or renew wiring
	Faulty main switch	Check and renew
	Burnt out bulb	Check and renew
	Burnt out fuse	Check and renew
	Defective switch	Check and renew
	Loose or broken wiring	Check and renew
PTO does not operate	Burnt out fuse	Inspect and renew.Check circuit
	Loose or broken wires or connections	Inspect circuit,tighten connections,or renew wiring
	Defective PTO switch	Check and renew
	Defective PTO solenoid	Check and renew

Problems	Causes	Countermeasures
Inoperative horn	Burnt out fuse	Inspect and renew.Check circuit before re- connecting power
	Loose or broken wires of connections	Inspect circuit,tighten connections,or renew wiring
	Defective horn switch	Check and renew
	Defective horn	Check and renew
Cruise does not operate	Burnt out fuse	Inspect and renew.Check circuit before re- connecting power
	Loose or broken wire	Inspect circuit,tighten connections,or renew wiring
	Loose the magnetic assembly	Inspect circuit, tighten connections

3.GLOW SYSTEM

Problems	Causes	Countermeasures
All glow plugs do not heat red	Discharged Battery	Check battery and charge or renew
	Loose or defective battery cable connections	Inspect, clean, and tighten connections
	Loose wire harness connections	Check and ensure connectors securely engaged
	Burnt out fusible link	Inspect and renew.Check circuit before re- connecting power
	Faulty wiring	Check glow plug circuit wiring and repair or renew
	Defective main switch	Check and renew
Individual glow plug does not glow	Defective glow plug	Check and renew
	Defective or corroded glow plug contacts	Inspect,Clean,or renew
	Loose or broken wires	Inspect,secure,repair,or renew wiring
Glow monitor light does not illuminate	Defective glow timer	Check and renew
	Defective glow monitor light or monitor and warning check unit	See"Light system troubleshooting"

4. STARTING SYSTEM

Problems	Causes	Countermeasures
Starter motor does not spin	Discharged battery	Check battery and charge or renew
	Defective stop light switch	Check and renew
	Defective key switch	Check and renew
	Defective starter motor connections or loose battery connections	Check, clean and tighten connections
	Faulty starter motor	Inspect,repair,or renew
	Defective master brake pedal	Inspect and try to push brake pedal
	Faulty reverse or forward pedal	Inspect ,adjust neutral
	Defective push switch	Check and renew
	Defective controller	Check and renew
Engine cranks slowly	Discharged battery	Check battery and charge or renew
	Excessive resistance in starter circuit	Check circuit connections and repair or renew faulty wiring
	Defective starter motor	Refer to the engine manual
	Tight engine	Refer to the engine manual

5. CHARGING SYSTEM

Problems	Causes	Countermeasures
Battery is low in charge or discharge	Loose or worn alternator drive belt	Check and adjust belt tension or renew
	Defective battery:It will not accept or hold charge.Electrolyte level is low	Check condition of battery and renew
	Excessive resistance due to loose charging system connections	Check, clean, and tighten circuit connections
	Defective alternator	Check and repair or renew
Alternator is charging at high rate (Battery is overheating)	Defective battery	Check condition of battery and renew
	Defective Alternator	Check and repair or renew
No output from alternator	Alternator drive belt is broken	Renew and tension correctly
	Loose connection or broken cable in charge system	Inspect system, tighten connections and repair or renew faulty wiring
	Defective voltage regulator	Check and renew
	Defective alternator	Check and repair or renew

Problems	Causes	Countermeasures
Intermittent	Alternator drive belt is slipping	Check and adjust belt tension or renew
or low alternator output	Loose connection or broken cable in charge system	Inspect system, tighten connections and repair or renew faulty wiring
	Defective alternator	Check and repair or renew
Warning light dims	Faulty external charging circuit connections	Inspect system, clean and tighten connections
	Faulty rotor slip rings or brushes	Inspect and repair or renew
	Defective monitor and warning unit	Check and renew
	Faulty rectifier or rectifying diodes	Check and renew
Warning light	Defective voltage regulator	Check and renew
is normal but battery is	Faulty starter	Check and renew
discharged	Faulty rectifier or rectifying diodes	Check and renew
Warning light	Loose or worn alternator drive belt	Check and adjust tension or renew
is lit during operation	Defective diodes	Check and renew
орогии	Faulty rotor,slip rings,or brushes	Inspect,repair,or renew
	Defective starter	Check and renew
	Defective rectifier or rectifying diodes	Check and renew
Warning light flashes intermittently	Faulty external charging circuit	Inspect circuit, clean, and tighten connections. Repair or renew faulty wiring
	Alternator's internal connections	Inspect and test circuitry,Repair or renew

CHAPTER 11 CABIN

SECTION 1. GENERAL DESCRIPTION	11-1
SECTION 2. INSTRUMENT AND RELATED PARTS	11-2
SECTION 3. CONTROLS	11-3
SECTION 4. HEATING SYSTEM	11-6
SECTION 5. AIR CONDITIONING SYSTEM	11-8

CHAPTER 11. Cabin

SECTION 1. GENERAL DESCRIPTION

The cab fully conforms to the international standard as far as safety and soundproofing are concerned. It can be provided with ventilation, heating and air-conditioning system.

It is available in the following version.:

- Cab with ventilation and heating systems
- Cab with ventilation, heating and air-conditioning systems.

The cab is in full conformity with the international standards as to the cab's soundproofing.

Be very careful when operating in small spaces and always protect your ears whenever other working equipment is generating dangerous noise levels.

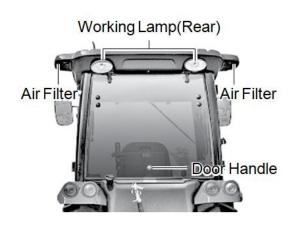


Fig.11-1 Rear side of Cabin

Fig.11-2 ISO view of Cabin

Fig.11-3 Remove the Cabin assembly.

Note:

Cabin can be Lifted up from transmission and gradually making sure that all relevant wiring. Piping, cock and links are disconnected.

Remember that steering, braking and operational performances are highly influenced by the implements mounted, the trailers transported and the ballasts applied to the tractor.

When transporting heavy loads (exceeding the weight of the tractor) reduce the speed under 15 Km/h..

All the implements mounted onto the tractor must be safely secured.

Be very careful during implement hitching and unhitching operations. When using implement supports, be sure they are suitable and sufficiently strong.

Section 2. INSTRUMENT AND RELATED PARTS

Doors:

The doors are provided with key locks.

To open from the outside, when unlocked, depress the push button.

To open from inside, push the lever downwards.

Rear Window:

The rear window is fitted with central handle for opening.

When opened it is held in place by two dampers.

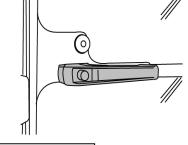


Fig.11-4

■ Working lamp switch

The front and rear working lights are ON when the button is pushed.

The instrument cluster illuminates when the work light indicator lamp is on.

- Wiper control switch
- Switch ON

The Wiper switch is ON when the top button is pushed.

The Washer switch is ON when the Mid-button is pushed.

- Switch OFF

Once again push the buttons.

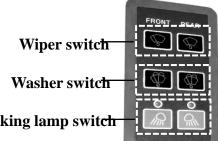
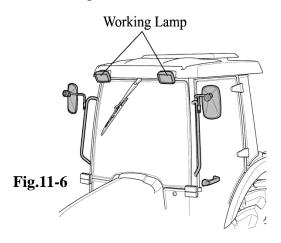



Fig.11-5 Windows and working lamp switch Working lamp switch

■ Working lamps (front and rear) :

The working lamps are located on the cab roof (two in the front and two in the rear) .They are switched on by means of the special switches on the roof console

Workking Lamp

Air Filter

Door Handle

Fig.11-7

■ Rearview mirrors.:

The cab is provided with rearview mirrors on both sides. They can be adjusted and folded, whenever necessary, to avoid interference with external obstacles.

The mirror have a telescopic arm to allow positioning for maximum convenience by the user.

Remember that mirrors must always be positioned in compliance with road traffic regulations when driving on a public highway.

■ Cab ceiling:

The ceiling is padded with insulation material to block heat radiation into the cab and keep the temperature down when working in very sunny areas.

The cab platform is covered with a "firm grip" carpet in the most commonly used areas.

It is recommended to keep this carpet clear of earth, mud, etc. so that the operator may get on and off the tractor in full safety.

Section 3. Controls Air conditioner, Heater control Recirculation inlet

Pivotable diffuser

Fig.11-8 Cabin interior

VENTILATION

The ventilation unit is housed in the cab ceiling.

To switch it on and adjust it, turn the electrical fan switch to the desired speed.

The cab becomes slightly pressurized when the ventilation system is in operation, so that the fresh air can enter only by way of the filter installed in the rear section of the cab roof.

The fan switch can be operated only after the ignition key is inserted.

The air flow can be regulated and directed by suitable positioning the air diffusers.

Air can be taken in fresh from outside or recycled from within the cab by way of the relative side inlets

■ Re-circulation inlets fully closed:

Air is taken in entirely from outside the cab through the rear grille and filtered through a paper element positioned behind the grille.

N.B-it is very important that the air diffusers never be completed closed so as to allow for a steady air flow.

To obtain a greater pressurization inside the cab, it is necessary to take the air from the outside,

therefore the inside air recirculation grille should be fully closed.

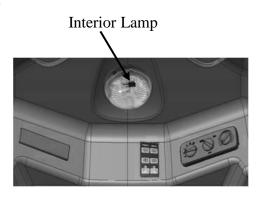
■ Windscreen Washer tank

Check the level of windscreen washer fluid in the plastic reservoir located at the right hand of the rear pillar of the cabin frame.

During winter, it is advisable to add a suitable antifreeze or methyl alcohol to the windscreen washer fluid.

Washer Tank

Fig.11-10



■ Interior Lamp

Push the button to light on

And push it again to light off

Fig.11-11

■ Blower control switch

Three position rocker switch

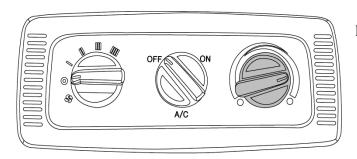


Fig.11-12 Blower control Switch

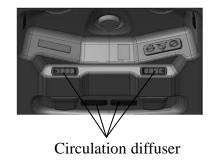
■ Temperature control

Set temperature control as required, fully clockwise For maximum cool and fully counterclockwise for heat.

Fig. 11-13 Temperature control

■ Air conditioning switch

To operate the air conditioner, the blower must be on. The blower speed temperature control and all vents must be adjusted to obtain the best cooling for the ambient temperature and dust conditions. Under normal operating conditions, and the windows and doors closed, temperatures in the cab of 6°C to 15 °C (10 °F to 25 °F) less than the ambient temperature will occur.


When operating the air conditioner system, the moisture level is decreased.

NOTE:

- 1) During cold weather, with ambient temperature above 0 °C (32 °F) operate the air conditioner at least once per month, for a period of 10 to 15 minutes. This will lubricate the seals to prevent them becoming brittle and help prevent the loss of refrigerant from the system.
- 2) The system is equipped with an environmentally safe refrigerant,R134a.Never recharge the air conditioning system with refrigerant other than R134a as this will result in loss of cooling and permanent damage to all air conditioning components

Circulation diffuser

With the circulation vent set in any position outside air will still be pulled into the cab.

SECTION 4 HEATING SYSTEM

General description

The heater is switched on and adjusted by rotating the control knob at the roof console, then switching on the blower and setting the selector at the preferred speed.

To warn the cab up quickly, the knob should be rotated fully clockwise and the blower set to speed 3.

The screen is demisted or defrosted by air directed through a slot vent. For defrost or fast demist, all other vents should be closed off.

IMPORTANT:

Ventilation is provided by a single blower unit serving both the heating system and the air conditioning system.

After reaching the desired temperature adjust the system to suit your needs.

NOTE:

-For ideal system operation, the engine must run at 1000 rpm

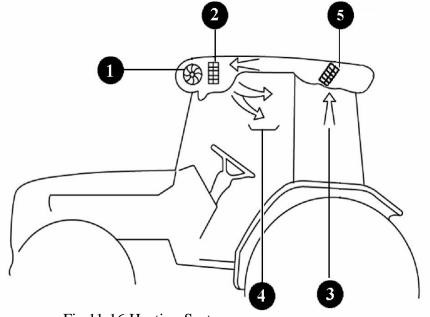


Fig.11-16 Heating System

1. Speed heating fan 2. Electric resistances 3. Recirculation inlets 4. Pivotal air diffuser 5. Air filter

Warning

Before starting the engine, make sure the system is off (by turning off the ventilation fan) so as not to overload the battery.

After the system at full power for a long period of time, never turn it off suddenly but let it first idle for about 20 seconds.

SYSTEM CONFIGULATION

- 1. The heating system consist of two units:
- 1-Heating pipes and blower unit installed behind roof console.
- 2-Power supplying set, consisting of an auxiliary alternator located front of the engine and driven by a belt directly linked to the engine pulley.
 - If the air does not come out from the diffusers right away as soon as the system is started, turn off immediately and identify the fault.
- N.B-Never turn on the heating system when working in dusty environments.

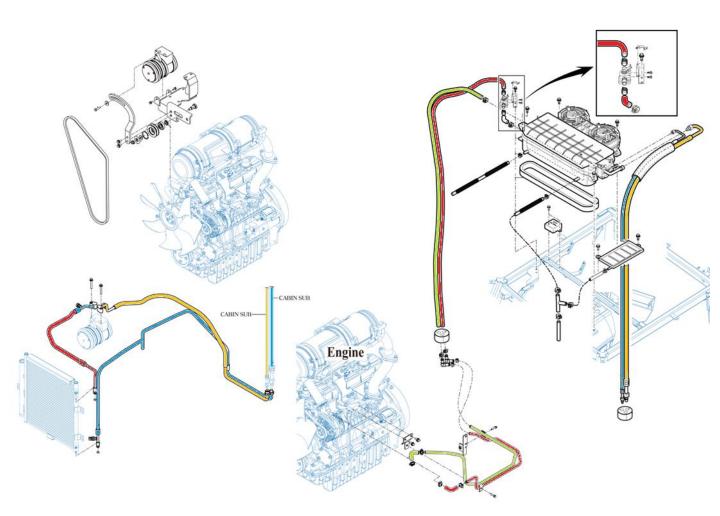


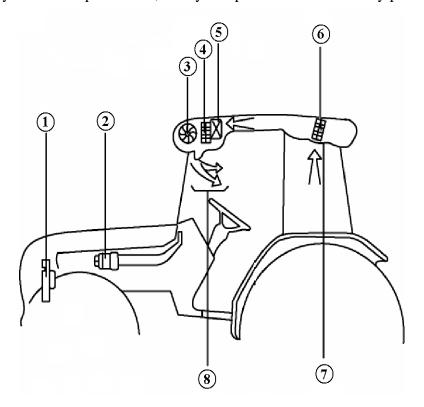
Fig.11-17 compressor and related parts

■ Compressor belt adjustment

Check the compressor belt tension regularly and adjust If required.

The correct tension is if the center of the belt is Pushed With a finger it moves in approx. 10 mm (0.39 in) as shown in the picture.

To adjust the belt, loosen or tighten the nut as shown in the picture.


Fig.11-18

SECTION 5. AIR CONDITIONING SYSTEM

The system is designed to ensure optimum temperature inside the cab and maximum comfort and safety for the operator.

However, it is advisable to consult our specialized workshops whenever repairs or adjustments need to be performed.

Do not approach the system with open flames, as any escape from the circuit may produce a lethal gas.

1.Alternator

2.Compressor

3.Speed fan

4. Electric resistance

5.Evaporator

6.Air filter

7. Recirculation inlets

8. Pivotal air diffusers

Fig.11-19 Air Conditioning System

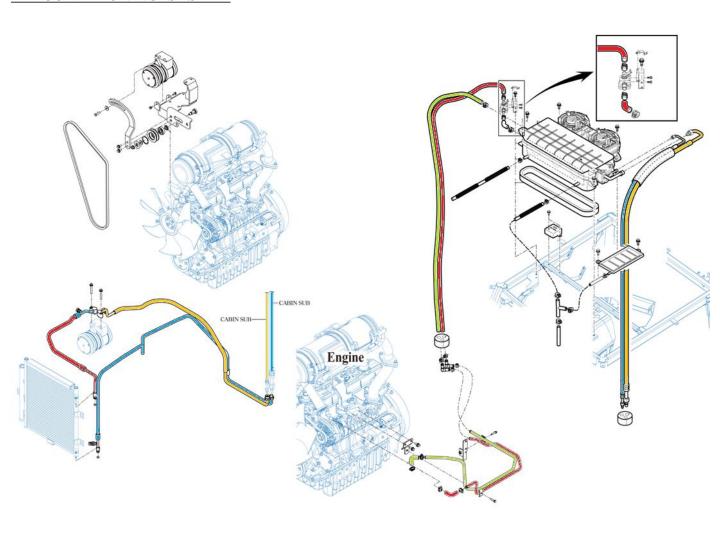


Fig.11-20 Air conditioning system and related parts

■ Radio, CD player

For operation refer to the Radio, USB manufacturers instructions.

■ Cup Holder

For bottles and personal belongings.

Fig.11-21

■ Cab Air intake filter

particles from the air.

The 《Paper》 filter is not suitable for the treatment of pesticides and so must be replaced by an

ACTIVE CARBON》FILTER available optionally. Once the pesticide treatment is finished, it is necessary to once again replace the "ACTIVE CARBON" filter with the paper filter, since this is the only type suited for filtering foreign

Optional ACTIVE CARBONFILTER is informed to parts Catalogue

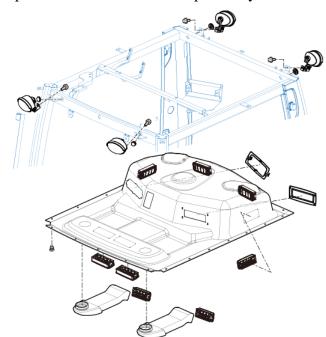
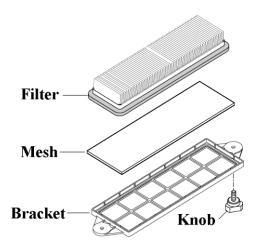



Fig.11-22

Air intake filter

Fig.11-23 Air filter

■ At Regular intervals

(According to the operating conditions): clean filter(Fig.11-23). To gain access to the filter it is necessary to loosen the two knobs fixing the side grill and the filter support, then remove the filter. Filter cleaning is performed as follows:

- 1.Direct a jet of compressed air (Max.6 bar) in the direction opposite to that of the filtering action until the dust is completely removed.
- 2.Do not wash with a water and or detergent solution because this element filter is basically paper.

Warning

Cab air filters remove dust in the air, but are not capable of removing chemicals used in spraying crops or in weed control. Many chemicals used for these purposes are toxic when improperly used. and can be hazardous to operators and others in the area. Follow the instructions of manufacturers of both the equipment and the chemicals regarding prohibition of dust or spray, personal hygiene practices, and other precautions noted by the manufacturers.

1.SAFETY PROCEDURES.

This safety alert symbol indicates important safety messages in this manual. when you see this symbol, carefully read the message that follows and be alert to the possibility of personal injury or death

Refrigerant R134a is the most stable and easiest to work with refrigerants now in use in air conditioner systems. Refrigerant R134a does not contain any chlorofluorocarbons (CFC's) which are harmful to the earth's ozone layer.

Safety procedures must be followed when working with Refrigerant R134a to prevent possible personal injury.

- 1. Always wear safety goggles when doing any service work near an air conditioner system. Liquid refrigerant getting into the eyes can cause serious injury. Do the following if you get refrigerant near or in your eyes.
- A. Flush your eyes with water for 15 minutes.
- B. See a physician immediately.
- 2. A drop of liquid refrigerant on your skin will cause frostbite. Open the fittings carefully and slowly when it is necessary to service the air conditioner system.

Your skin must be treated for frostbite or a physician must be seen if you get refrigerant on your skin.

- 3.Keep refrigerant containers in the correct upright position. Always keep refrigerant containers away from heat or sunlight. The pressure in a container will increase with heat.
- 4. Always reclaim refrigerant from the system, if you are going to weld or steam clean near the air conditioner system.
- 5. Always check the temperature and pressure of the air conditioner system before reclaiming the refrigerant and when you test the system.
- 6.Never leak test the system using a flame tester. Dangerous gas can form when refrigerant comes in contact with an open flame. Never permit fumes to be inhaled.
- 7. Never leak or pressure test the system with compressed air or oxygen. Refrigerant R134a in the presence of air or oxygen above atmospheric pressure can form a combustible gas.

Caution

Never operate the engine in a closed building. Proper ventilation is required under all circumstances.

Caution

Never touch liquid refrigerant, since even a small drop on your skin will cause severe and painful frostbite. Always wear protective gloves.

Always wear safety goggles when working with liquid refrigerant. Liquid refrigerant in your eyes could cause blindness.

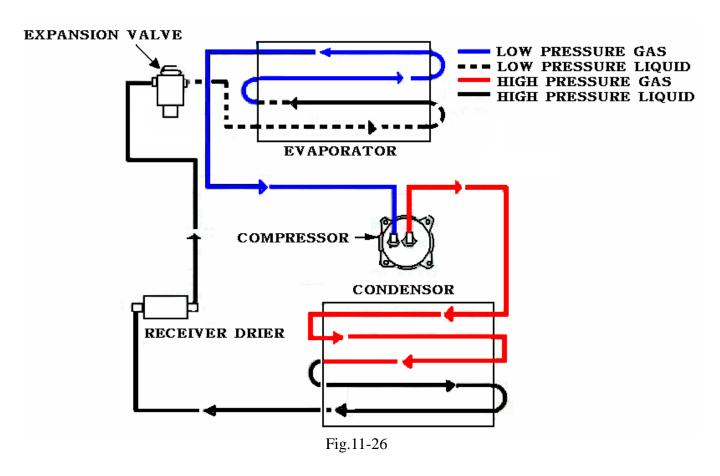
Caution

DO NOT use steam to clean any air conditioner system parts while the system is charged. The heat may cause the refrigerant to rise in pressure that can cause the system to explode

2. OPERATION

The air conditioner system contains five major components: Compressor, receiver drier, expansion valve and evaporator. These components are connected by tubes and hoses and operate as a closed system. The air conditioner system is charged with R-134a refrigerant..

The compressor receives the refrigerant as a low pressure gas. The compressor then compresses the refrigerant and sends it in the form of a high-pressure high temperature gas to the condenser. The airflow through the condenser then removes the heat from the refrigerant. As the heat is removed the refrigerant changes to the high-pressure liquid.


The high-pressure refrigerant liquid then flows from the condenser to the receiver drier. The receiver drier is a container filled with moisture removing material, which removes any moisture that may have entered the air conditioner system in order to prevent corrosion of the internal components of the system.

The refrigerant still in a high pressure liquid form, then flows from the receiver drier to the expansion valve then causes a restriction in flow of refrigerant to the evaporator core, lowering the pressure of the liquid.

As the refrigerant flows through the evaporator core the refrigerant is heated by the air around and flowing through the evaporator fins. The combination of increased heat and decreased pressure causes the refrigerant to evaporate and form a low pressure gas.

The evaporation causes the airflow through the evaporator fins to become very cool. The cool air then passes from the evaporator to the operators cab.

The low pressure refrigerant gas return to the compressor to repeat the cycle.

- 3. Checking the air conditioning system.
- ①Economic friendly refrigerant: R134a 0.60 Kg.

The presence of air and water in the system could jeopardize its efficiency.

- -The air is uselessly compressed by the compressor and no cooling effect is produced.
- -The moisture has a tendency rise to obstructions which prevent the cooling efficiency.
- ② Check belt tension; when finger pressure is applied to the mid-point between both pulleys.
- 3 Condenser fins must always be duly clean using water or an air set.
- 4. Checking the air conditioning system charge
- (1) Check the refrigerant charge.
- A. Run the engine at 1500rpm
- B. Set the air conditioning system in the coldest for 5 minutes.
- C. Check the sight glass dear or cloud

If the air-con. is operated with not charged.

The lubrication in the compressor can cause the damage.

(2) Check the refrigerant with receive drier sight glass

	Bubbles or foam visible	Trouble shoot	
	 Bubbles flow and refrigerant gas disappeared like a fog flows 	 Deficient of refrigerant Replenish Nothing different temperature between H.L pipe High pressure of the pressure gauge needle indicates low pressure 	Abnormal
Same bubble appeared occasionally (1~2 sec. gap)		 Replenish the refrigerant High pressure pipe is hot and low pressure pipe is a little cool. H.L pressure of the pressure gauge needle indicates low pressure. 	Abnormal

Bubbles or foam visible	Trouble shoot	
 No bubble shown High-pressure pipe is hot abnormally. H-L pressure of the pressure gauge needle indicates high pressure abnormally 	 Too much of refrigerant deflate. High pressure pipe is not abnormal H.L pressure of the pressure gauge needle indicates high abnormally. 	Abnormal
 Refrigerant in the sight is shown clearly When engine RPM operates with high low some bubbles disappear slowly 	 Normal refrigerant gas situation High pressure pipe is hot Low pressure pipe is cool High low pressure is normal with below. Low: 1.5~2.0kg/m² High: 14.5~15kg/m² 	normal

5. Diagnosing malfunctions.

(1) Tracing faults

	SYMPTOM	CONDITION	CAUSE	REMEDY
1.Compressor	Abnormal sound	Inlet sound	Insufficient Lub.	Replenish
		Outlet sound	Belt tension release	Adjust
			Release the bracket	Tighten the bolts
			Clutch fail	Check
	Abnormal	Inlet cause	Damaged parts	Check, replace
	revolution		Slip the clutch	Check, replace
			Not Lub.	Replenish
		Outlet cause	Belt tension released	Adjust
	Refrigerant or oil leakage	Refrigerant or oil leakage	Sealing washer damaged	replace
			Head bolt released	Tighten the bolts
			D-ring damaged	Replace
	Excessive pressure	Low, High pressure	Insufficient refrigerator	Adjust
			Compressor	Replace

	SYMPTOM	CONDITION	CAUSE	REMEDY
2.Motor			Air inlet clogged	Remove
	pressure or don't work		Evaporator freezing	Controlling minimum pressure
			Ventilator switch damage	Replace the switch
			Compressor	Replace
		Motor is abnormal	Motor failure	Replace
			Wire cut	Replace
		Air leakage	Duct leakage	Check, tighten
	Unable to control the fan	Motor	Air volume control switch failure	Check, tighten
		Motor is abnormal	Motor failure	Replace
3. Clutch	Noise	Regular noise Irregular noise	Interference with pulley	Control the compressor direction
	Disengage	Engaged sometimes	Wire defect	Check wire
		Engaged to push with hand	Clutch gap large	Adjust
			Low voltage	Check battery
		No defect wire	malfunction	Replace
	Slip	Slip during rotation	Low voltage	Check battery
			Oil stick at clutch	Clean
			Malfunction	Replace

(2) How to check the air conditioning system with the needle of high low gauge

To connect with manifold pressure gauge can find the cause of air conditioning system.

Because manifold pressure gauge is various sensibly (Ambient Temp. is based on 30~35°C)

Caution:

Operating E/G RPM 1500~2000 is must, and so to that you can check the correct cause and air conditioning.

(In case below the figure of indicated pressure gauge has some clearance, confirm with approximate indicated needle data.)

Gauge pressure conversion

- lb/in²=PSI
- ●1 kg/cm²=14,223 lb/in²

(Ex) 200 PSI=14 kgf/cm²

1.Normal

a	Pressure	• Low pressure : 1.5~2.0 kg/cm² • High pressure: 14.5~15.0 kg/cm²	Low pressure 2 Kg/cm² High Pressure 15 Kg/cm²
b	Estimate	Refrigerant condition goodAir conditioning goodNormal air conditioning system	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2. Deficient of Refrigerant Gas

a	Pressure	• Low pressure : 0.8 kg/cm/(Low)	
		● High pressure: 8~9 kg/cm²(Low)	
(b)	Situation	Deficient of air conditioning	
		(Air duct is not cool)	
		Many bubbles at sight glass	Low pressure 0.8 Kg/cm² High Pressure 8~9 Kg/cm²
©	Cause	Refrigerant leakage in the air condition	76 30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
		Clogged the expansion valve	
		• clogged the receiver drier	
d	Estimate	● Deficient of refrigerant and leakage in	
		the air conditioning system	
e	Remedy	Replenish the refrigerant and repair partially	
		● Repair the expansion valve and the	
		receive drier or replace	

3.Too much the refrigerant

a	Pressure	●Low pressure : 2.5 kg/c㎡(High) ●High pressure: 20 kg/c㎡(High)	
(b)	Situation	Refrigerant condition is not goodNever seen the bubble at sight glass	Low pressure High Pressure 2.5 Kg/cm² 20 Kg/cm²
©	Cause	Much refrigerantDefect of the condenser	20 Hg, dil
(d)	Estimate	Overcharged the refrigerantDefect of the condenser: Pin and the cooling fan	Trails Section 1
e	Remedy	Deflate the refrigerantClean the condenser, and check the cooling fan belt	

4.mixed Air in the air conditioning system

a	Pressure	●Low pressure : 2.5 kg/c㎡(High) ●High pressure: 23 kg/c㎡(High)	
(b)	Situation	 Deficient of cooling condition (Not cool) Not cool when touch the low pipe 	Low pressure 2.5 Kg/cm² High Pressure 23 Kg/cm²
C	Cause	• Air was mixed in the air conditioning system	76 10 20 20 20 20 20 20 20 20 20 20 20 20 20
Ø	Estimate	• Defect of the vacuum work in the air conditioning system	
e	Remedy	 Remove the vacuum and replenish the refrigerant Contaminated oil in the condenser: Clean and replace Replace the receive dryer 	

5.mixed H2O in the air conditioning System

a	Pressure	●Low pressure : Low~1.5 kg/cm² (Low or vibrate seriously) ●High pressure: 7~15 kg/cm² (Low or vibrate seriously)	
Ь	Situation	 Air conditioning is cool and is not periodically Manifold gauge pressure is occasionally down or normal 	Low pressure 50cmHg~1.5Kg/cm² High Pressure 7~15 Kg/cm²
C	Cause	The expansion valve is freezing occasionally Mixed with H ₂ O in the air conditioning system	The state of the s
(d)	Estimate	Receive dryer is over-saturationH2O was freezing in the expansion valve	
e	Remedy	Replenish the refrigerantReplace the receive dryer	

6.Refrigerant doesn't circulate in the Air conditioning system

a	Pressure	●Low pressure : Negative pressure (Low) ●High pressure: 6 kg/c㎡(Low)	
б	Situation	Deficient air conditioning (Not cool)Cool occasionally	Low pressure 76 Kg/cm² High Pressure 6 Kg/cm²
C	Cause	Clogged in the Expansion valve hole (Clogged by foreign matter or freezing, dust)	To 16 20 20 20 20 20 20 20 20 20 20 20 20 20
d	Estimate	●Clogged in the expansion valve	
e	Remedy	 Remove the wet: Replenish the refrigerant Remove dust: Disassemble the expansion valve and clean with air lower and replace Replace the receive dryer: Leakage in the expansion valve replace 	

7.Defect of the compressor pressure

a	Pressure	●Low pressure : 4~6 kg/cm²(High) ●High pressure: 7~10 kg/cm²(Low)	
b	Situation	Deficient air conditioning (Not cool)	Low pressure 4~6 Kg/cm² 7~10 Kg/cm²
C	Cause	●Compressor inside leakage	((6 26)) (76 130) (76 130) (76 130) (77 130) (78 130) (78 130) (78 130) (78 130)
đ	Estimate	● Defect pressure of the compressor (Valve leakage or damaged)	
e	Remedy	●Repair or replace	

CONVERSION TABLES

Millimeters to inches

mm	in	mm	in	mm	in	mm	in
1	0.0394	26	1.0236	51	2.0079	76	2.9921
2	0.0787	27	1.0630	52	2.0472	77	3.0315
3	0.1181	28	1.1024	53	2.0866	78	3.0709
4	0.1575	29	1.1417	54	2.1260	79	3.1102
5	0.1969	30	1.1811	55	2.1654	80	3.1496
6	0.2362	31	1.2205	56	2.2047	81	3.1890
7	0.2756	32	1.2598	57	2.2441	82	3.2283
8	0.3150	33	1.2992	58	2.2835	83	3.2677
9	0.3543	34	1.3386	59	2.3228	84	3.3071
10	0.3937	35	1.3780	60	2.3622	85	3.3465
11	0.4331	36	1.4173	61	2.4016	86	3.3858
12	0.4724	37	1.4567	62	2.4409	87	3.4252
13	0.5118	38	1.4961	63	2.4803	88	3.4646
14	0.5512	39	1.5354	64	2.5197	89	3.5039
15	0.5906	40	1.5748	65	2.5591	90	3.5433
16	0.6299	41	1.6142	66	2.5984	91	3.5827
17	0.6693	42	1.6535	67	2.6378	92	3.6220
18	0.7087	43	1.6929	68	2.6772	93	3.6614
19	0.7480	44	1.7323	69	2.7165	94	3.7008
20	0.7874	45	1.7717	70	2.7559	95	3.7402
21	0.8268	46	1.8110	71	2.7953	96	3.7795
22	0.8661	47	1.8504	72	2.8346	97	3.8189
23	0.9055	48	1.8898	73	2.8740	98	3.8583
24	0.9449	49	1.9291	74	2.9134	99	3.8976
25	0.9843	50	1.9685	75	2.9528	100	3.9370

Inches to millimeters

	1110	1100 10 1	IIIIIIII E LE I	,	
in	mm	in	mm	in	mm
1/64	0.3969	25/64	9.9219	13/16	20.6375
1/32	0.7938	13/32	10.3188	53/64	21.0344
3/64	1.1906	27/64	10.7156	27/32	21.4313
1/16	1.5875	7/16	11.1125	55/64	21.8281
5/64	1.9844	29/64	11.5094	7/8	22.2250
3/32	2.3813	15/32	11.9063	57/64	22.6219
7/64	2.7781	31/64	12.3031	29/32	23.0188
1/8	3.1750	1/2	12.7000	59/64	23.4156
9/64	3.5719	33/64	13.0969	15/16	23.8125
5/32	3.9688	17/32	13.4938	61/64	24.2094
11/64	4.3656	35/64	13.8906	31/32	24.6063
3/16	4.7625	9/16	14.2875	63/64	25.0031
13/64	5.1594	37/64	14.6844		
7/32	5.5563	19/32	15.0813		
15/64	5.9531	39/64	15.4781		
1/4	6.3500	5/8	15.8750		
17/64	6.7469	41/64	16.2719		
9/32	7.1438	21/32	16.6688		
19/64	7.5406	43/64	17.0656		
5/16	7.9375	11/16	17.4625		
21/64	8.3344	45/64	17.8594		
11/32	8.7313	23/32	18.2563		
23/64	9.1281	47/64	18.6531		
3/8	9.5250	3/4	19.0500		
		49/64	19.4469		
		25/32	19.8438		
		51/64	20.2406		
		51/64	20.2406		

	Length				Feet to	Meters					
ft	0	1	2	3	4	5	6	7	8	9	ft
	m	m	m	m	m	m	m	m	m	m	
0	0.0000	0.3050	0.6100	0.9150	1.2200	1.5250	1.8300	2.1350	2.4400	2.7450	0
10	8.0532	3.3550	3.6600	3.9650	4.2700	4.5750	4.8800	5.1850	5.4900	5.7950	10
20	21.1097	6.4050	6.7100	7.0150	7.3200	7.6250	7.9300	8.2350	8.5400	8.8450	20
30	34.1661	9.4550	9.7600	10.0650	10.3700	10.6750	10.9800	11.2850	11.5900	11.8950	30
40	47.2225	12.5050	12.8100	13.1150	13.4200	13.7250	14.0300	14.3350	14.6400	14.9450	40
50	60.2790	15.5550	15.8600	16.1650	16.4700	16.7750	17.0800	17.3850	17.6900	17.9950	50
60	73.3354	18.6050	18.9100	19.2150	19.5200	19.8250	20.1300	20.4350	20.7400	21.0450	60
70	86.3919	21.6550	21.9600	22.2650	22.5700	22.8750	23.1800	23.4850	23.7900	24.0950	70
80	99.4483	24.7050	25.0100	25.3150	25.6200	25.9250	26.2300	26.5350	26.8400	27.1450	80
90	112.5047	27.7550	28.0600	28.3650	28.6700	28.9750	29.2800	29.5850	29.8900	30.1950	90
100	125.5612	30.8050	31.1100	31.4150	31.7200	32.0250	32.3300	32.6350	32.9400	33.2450	100

Meters to Feet

m	0	1	2	3	4	5	6	7	8	9	m
	ft										
0	0.0000	3.2808	6.5616	9.8424	13.1232	16.4040	19.6848	22.9656	26.2464	29.5272	0
10	32.8080	36.0888	39.3696	42.6504	45.9312	49.2120	52.4928	55.7736	59.0544	62.3352	10
20	65.6160	68.8968	72.1776	75.4584	78.7392	82.0200	85.3008	88.5816	91.8624	95.1432	20
30	98.4240	101.7048	104.9856	108.2664	111.5472	114.8280	118.1088	121.3896	124.6704	127.9512	30
40	131.2320	134.5128	137.7936	141.0744	144.3552	147.6360	150.9168	154.1976	157.4784	160.7592	40
50	164.0400	167.3208	170.6016	173.8824	177.1632	180.4440	183.7248	187.0056	190.2864	193.5672	50
60	196.8480	200.1288	203.4096	206.6904	209.9712	213.2520	216.5328	219.8136	223.0944	226.3752	60
70	229.6560	232.9368	236.2176	239.4984	242.7792	246.0600	249.3408	252.6216	255.9024	259.1832	70
80	262.4640	265.7448	269.0256	272.3064	275.5872	278.8680	282.1488	285.4296	288.7104	291.9912	80
90	295.2720	298.5528	301.8336	305.1144	308.3952	311.6760	314.9568	318.2376	321.5184	324.7992	90
100	328.0800	331.3608	334.6416	337.9224	341.2032	344.4840	347.7648	351.0456	354.3264	357.6072	100

Mile to kilometers

					WITH L	<u>o knomete</u>	15				
miles	0	1	2	3	4	5	6	7	8	9	miles
	Km	Km	Km	Km	Km	Km	Km	Km	Km	Km	
0	0.000	1.609	3.218	4.827	6.436	8.045	9.654	11.263	12.872	14.481	0
10	16.090	17.699	19.308	20.917	22.526	24.135	25.744	27.353	28.962	30.571	10
20	32.180	33.789	35.398	37.007	38.616	40.225	41.834	43.443	45.052	46.661	20
30	48.270	49.879	51.488	53.097	54.706	56.315	57.924	59.533	61.142	62.751	30
40	64.360	65.969	67.578	69.187	70.796	72.405	74.014	75.623	77.232	78.841	40
50	80.450	82.059	83.668	85.277	86.886	88.495	90.104	91.713	93.322	94.931	50
60	96.540	98.149	99.758	101.367	102.976	104.585	106.194	107.803	109.412	111.021	60
70	112.630	114.239	115.848	117.457	119.066	120.675	122.284	123.893	125.502	127.111	70
80	128.720	130.329	131.938	133.547	135.156	136.765	138.374	139.983	141.592	143.201	80
90	144.810	146.419	148.028	149.637	151.246	152.855	154.464	156.073	157.682	159.291	90
100	160.900	162.509	164.118	165.727	167.336	168.945	170.554	172.163	173.772	175.381	100

kilometers to Miles

Km	0	1	2	3	4	5	6	7	8	9	Km
	Miles										
0	0.000	0.621	1.242	1.863	2.484	3.105	3.726	4.347	4.968	5.589	0
10	6.210	6.831	7.452	8.073	8.694	9.315	9.936	10.557	11.178	11.799	10
20	12.420	13.041	13.662	14.283	14.904	15.525	16.146	16.767	17.388	18.009	20
30	18.630	19.251	19.872	20.493	21.114	21.735	22.356	22.977	23.598	24.219	30
40	24.840	25.461	26.082	26.703	27.324	27.945	28.566	29.187	29.808	30.429	40
50	31.050	31.671	32.292	32.913	33.534	34.155	34.776	35.397	36.018	36.639	50
60	37.260	37.881	38.502	39.123	39.744	40.365	40.986	41.607	42.228	42.849	60
70	43.470	44.091	44.712	45.333	45.954	46.575	47.196	47.817	48.438	49.059	70
80	49.680	50.301	50.922	51.543	52.164	52.785	53.406	54.027	54.648	55.269	80
90	55.890	56.511	57.132	57.753	58.374	58.995	59.616	60.237	60.858	61.479	90
100	62.100	62.721	63.342	63.963	64.584	65.205	65.826	66.447	67.068	67.689	100

	Area			5	Square inc	hes to squ	are centir	neters			
in2	0	1	2	3	4	5	6	7	8	9	in2
	cm2	cm2	cm2	cm2	cm2	cm2	cm2	cm2	cm2	cm2	
0	0.000	6.462	12.924	19.386	25.848	32.310	38.772	45.234	51.696	58.158	0
10	64.620	71.082	77.544	84.006	90.468	96.930	103.392	109.854	116.316	122.778	10
20	129.240	135.702	142.164	148.626	155.088	161.550	168.012	174.474	180.936	187.398	20
30	193.860	200.322	206.784	213.246	219.708	226.170	232.632	239.094	245.556	252.018	30
40	258.480	264.942	271.404	277.866	284.328	290.790	297.252	303.714	310.176	316.638	40
50	323.100	329.562	336.024	342.486	348.948	355.410	361.872	368.334	374.796	381.258	50
60	387.720	394.182	400.644	407.106	413.568	420.030	426.492	432.954	439.416	445.878	60
70	452.340	458.802	465.264	471.726	478.188	484.650	491.112	497.574	504.036	510.498	70
80	516.960	523.422	529.884	536.346	542.808	549.270	555.732	562.194	568.656	575.118	80
90	581.580	588.042	594.504	600.966	607.428	613.890	620.352	626.814	633.276	639.738	90
100	646.200	652.662	659.124	665.586	672.048	678.510	684.972	691.434	697.896	704.358	100

				Square	centimeter	s to Squai	re inches				
cm2	0	1	2	3	4	5	6	7	8	9	cm2
	in2	in2	in2	in2	in2	in2	in2	in2	in2	in2	
0	0.000	0.155	0.310	0.465	0.620	0.775	0.930	1.085	1.240	1.395	0
10	1.550	1.705	1.860	2.015	2.170	2.325	2.480	2.635	2.790	2.945	10
20	3.100	3.255	3.410	3.565	3.720	3.875	4.030	4.185	4.340	4.495	20
30	4.650	4.805	4.960	5.115	5.270	5.425	5.580	5.735	5.890	6.045	30
40	6.200	6.355	6.510	6.665	6.820	6.975	7.130	7.285	7.440	7.595	40
50	7.750	7.905	8.060	8.215	8.370	8.525	8.680	8.835	8.990	9.145	50
60	9.300	9.455	9.610	9.765	9.920	10.075	10.230	10.385	10.540	10.695	60
70	10.850	11.005	11.160	11.315	11.470	11.625	11.780	11.935	12.090	12.245	70
80	12.400	12.555	12.710	12.865	13.020	13.175	13.330	13.485	13.640	13.795	80
90	13.950	14.105	14.260	14.415	14.570	14.725	14.880	15.035	15.190	15.345	90
100	15.500	15.655	15.810	15.965	16.120	16.275	16.430	16.585	16.740	16.895	100

				Cubic ir	nches to C	ubic Cent	meters				
in3	0	1	2	3	4	5	6	7	8	9	in3
	cm3(cc)	cm3(cc)	cm3(cc)	cm3(cc)	cm3(cc)	cm3(cc)	cm3(cc)	cm3(cc)	cm3(cc)	cm3(cc)	
0	0.000	16.387	32.774	49.161	65.548	81.935	98.322	114.709	131.096	147.483	0
10	163.870	180.257	196.644	213.031	229.418	245.805	262.192	278.579	294.966	311.353	10
20	327.740	344.127	360.514	376.901	393.288	409.675	426.062	442.449	458.836	475.223	20
30	491.610	507.997	524.384	540.771	557.158	573.545	589.932	606.319	622.706	639.093	30
40	655.480	671.867	688.254	704.641	721.028	737.415	753.802	770.189	786.576	802.963	40
50	819.350	835.737	852.124	868.511	884.898	901.285	917.672	934.059	950.446	966.833	50
60	983.220	999.607	1015.994	1032.381	1048.768	1065.155	1081.542	1097.929	1114.316	1130.703	60
70	1147.090	1163.477	1179.864	1196.251	1212.638	1229.025	1245.412	1261.799	1278.186	1294.573	70
80	1310.960	1327.347	1343.734	1360.121	1376.508	1392.895	1409.282	1425.669	1442.056	1458.443	80
90	1474.830	1491.217	1507.604	1523.991	1540.378	1556.765	1573.152	1589.539	1605.926	1622.313	90
100	1638.700	1655.087	1671.474	1687.861	1704.248	1720.635	1737.022	1753.409	1769.796	1786.183	100

				Cubic	Centimeter	s to cubic	inches				
cm3(cc)	0	1	2	3	4	5	6	7	8	9	cm3(cc)
	in3	in3	in3	in3	in3	in3	in3	in3	in3	in3	
0	0.0000	0.0610	0.1221	0.1831	0.2441	0.3051	0.3662	0.4272	0.4882	0.5492	0
10	0.6103	0.6713	0.7323	0.7933	0.8544	0.9154	0.9764	1.0374	1.0985	1.1595	10
20	1.2205	1.2815	1.3426	1.4036	1.4646	1.5256	1.5867	1.6477	1.7087	1.7697	20
30	1.8308	1.8918	1.9528	2.0138	2.0749	2.1359	2.1969	2.2579	2.3190	2.3800	30
40	2.4410	2.5020	2.5631	2.6241	2.6851	2.7461	2.8072	2.8682	2.9292	2.9902	40
50	3.0513	3.1123	3.1733	3.2343	3.2954	3.3564	3.4174	3.4784	3.5395	3.6005	50
60	3.6615	3.7225	3.7836	3.8446	3.9056	3.9666	4.0277	4.0887	4.1497	4.2107	60
70	4.2718	4.3328	4.3938	4.4548	4.5159	4.5769	4.6379	4.6989	4.7600	4.8210	70
80	4.8820	4.9430	5.0041	5.0651	5.1261	5.1871	5.2482	5.3092	5.3702	5.4312	80
90	5.4923	5.5533	5.6143	5.6753	5.7364	5.7974	5.8584	5.9194	5.9805	6.0415	90
100	6.1025	6.1635	6.2246	6.2856	6.3466	6.4076	6.4687	6.5297	6.5907	6.6517	100

	Volume				Gallons(U.S) to Lite	ırs				
US gal	0	1	2	3	4	5	6	7	8	9	US gal
	Liters	Liters	Liters	Liters	Liters	Liters	Liters	Liters	Liters	Liters	
0	0.000	3.785	7.571	11.356	15.142	18.927	22.712	26.498	30.283	34.069	0
10	37.854	41.639	45.425	49.210	52.996	56.781	60.566	64.352	68.137	71.923	10
20	75.708	79.493	83.279	87.064	90.850	94.635	98.420	102.206	105.991	109.777	20
30	113.562	117.347	121.133	124.918	128.704	132.489	136.274	140.060	143.845	147.631	30
40	151.416	155.201	158.987	162.772	166.558	170.343	174.128	177.914	181.699	185.485	40
50	189.270	193.055	196.841	200.626	204.412	208.197	211.982	215.768	219.553	223.339	50
60	227.124	230.909	234.695	238.480	242.266	246.051	249.836	253.622	257.407	261.193	60
70	264.978	268.763	272.549	276.334	280.120	283.905	287.690	291.476	295.261	299.047	70
80	302.832	306.617	310.403	314.188	317.974	321.759	325.544	329.330	333.115	336.901	80
90	340.686	344.471	348.257	352.042	355.828	359.613	363.398	367.184	370.969	374.755	90
100	378.540	382.325	386.111	389.896	393.682	397.467	401.252	405.038	408.823	412.609	100

				Liters	to Gallons	(U.S)					
Liters	0	1	2	3	4	5	6	7	8	9	Liters
	US gal	US gal	US gal	US gal	US gal	US gal					
0	0.000	0.264	0.528	0.793	1.057	1.321	1.585	1.849	2.114	2.378	0
10	2.642	2.906	3.170	3.435	3.699	3.963	4.227	4.491	4.756	5.020	10
20	5.284	5.548	5.812	6.077	6.341	6.605	6.869	7.133	7.398	7.662	20
30	7.926	8.190	8.454	8.719	8.983	9.247	9.511	9.775	10.040	10.304	30
40	10.568	10.832	11.096	11.361	11.625	11.889	12.153	12.417	12.682	12.946	40
50	13.210	13.474	13.738	14.003	14.267	14.531	14.795	15.059	15.324	15.588	50
60	15.852	16.116	16.380	16.645	16.909	17.173	17.437	17.701	17.966	18.230	60
70	18.494	18.758	19.022	19.287	19.551	19.815	20.079	20.343	20.608	20.872	70
80	21.136	21.400	21.664	21.929	22.193	22.457	22.721	22.985	23.250	23.514	80
90	23.778	24.042	24.306	24.571	24.835	25.099	25.363	25.627	25.892	26.156	90
100	26.420	26.684	26.948	27.213	27.477	27.741	28.005	28.269	28.534	28.798	100

				Gallo	ns(IMP.)	to Liters					
lmp. gal	0	1	2	3	4	5	6	7	8	9	lmp. gal
	Liters	Liters	Liters	Liters	Liters	Liters	Liters	Liters	Liters	Liters	
0	0.0000	4.5460	9.0920	13.6380	18.1840	22.7300	27.2760	31.8220	36.3680	40.9140	0
10	45.4600	50.0060	54.5520	59.0980	63.6440	68.1900	72.7360	77.2820	81.8280	86.3740	10
20	90.9200	95.4660	100.0120	104.5580	109.1040	113.6500	118.1960	122.7420	127.2880	131.8340	20
30	136.3800	140.9260	145.4720	150.0180	154.5640	159.1100	163.6560	168.2020	172.7480	177.2940	30
40	181.8400	186.3860	190.9320	195.4780	200.0240	204.5700	209.1160	213.6620	218.2080	222.7540	40
50	227.3000	231.8460	236.3920	240.9380	245.4840	250.0300	254.5760	259.1220	263.6680	268.2140	50
60	272.7600	277.3060	281.8520	286.3980	290.9440	295.4900	300.0360	304.5820	309.1280	313.6740	60
70	318.2200	322.7660	327.3120	331.8580	336.4040	340.9500	345.4960	350.0420	354.5880	359.1340	70
80	363.6800	368.2260	372.7720	377.3180	381.8640	386.4100	390.9560	395.5020	400.0480	404.5940	80
90	409.1400	413.6860	418.2320	422.7780	427.3240	431.8700	436.4160	440.9620	445.5080	450.0540	90
100	454.6000	459.1460	463.6920	468.2380	472.7840	477.3300	481.8760	486.4220	490.9680	495.5140	100

				Liters	to Gallons	(IMP)					
Liters	0	1	2	3	4	5	6	7	8	9	Liters
	gal	gal	gal	gal	gal	gal	gal	gal	gal	gal	
0	0.0000	0.2200	0.4400	0.6600	0.8800	1.1000	1.3200	1.5400	1.7600	1.9800	0
10	2.2000	2.4200	2.6400	2.8600	3.0800	3.3000	3.5200	3.7400	3.9600	4.1800	10
20	4.4000	4.6200	4.8400	5.0600	5.2800	5.5000	5.7200	5.9400	6.1600	6.3800	20
30	6.6000	6.8200	7.0400	7.2600	7.4800	7.7000	7.9200	8.1400	8.3600	8.5800	30
40	8.8000	9.0200	9.2400	9.4600	9.6800	9.9000	10.1200	10.3400	10.5600	10.7800	40
50	11.0000	11.2200	11.4400	11.6600	11.8800	12.1000	12.3200	12.5400	12.7600	12.9800	50
60	13.2000	13.4200	13.6400	13.8600	14.0800	14.3000	14.5200	14.7400	14.9600	15.1800	60
70	15.4000	15.6200	15.8400	16.0600	16.2800	16.5000	16.7200	16.9400	17.1600	17.3800	70
80	17.6000	17.8200	18.0400	18.2600	18.4800	18.7000	18.9200	19.1400	19.3600	19.5800	80
90	19.8000	20.0200	20.2400	20.4600	20.6800	20.9000	21.1200	21.3400	21.5600	21.7800	90
100	22.0000	22.2200	22.4400	22.6600	22.8800	23.1000	23.3200	23.5400	23.7600	23.9800	100

	MASS				P	ounds to	Kilogran	าร			
lbs	0	1	2	3	4	5	6	7	8	9	lbs
	Kg	Kg	Kg	Kg	Kg	Kg	Kg	Kg	Kg	Kg	
0	0.000	0.454	0.907	1.361	1.814	2.268	2.722	3.175	3.629	4.082	0
10	4.536	4.990	5.443	5.897	6.350	6.804	7.258	7.711	8.165	8.618	10
20	9.072	9.526	9.979	10.433	10.886	11.340	11.794	12.247	12.701	13.154	20
30	13.608	14.062	14.515	14.969	15.422	15.876	16.330	16.783	17.237	17.690	30
40	18.144	18.598	19.051	19.505	19.958	20.412	20.866	21.319	21.773	22.226	40
50	22.680	23.134	23.587	24.041	24.494	24.948	25.402	25.855	26.309	26.762	50
60	27.216	27.670	28.123	28.577	29.030	29.484	29.938	30.391	30.845	31.298	60
70	31.752	32.206	32.659	33.113	33.566	34.020	34.474	34.927	35.381	35.834	70
80	36.288	36.742	37.195	37.649	38.102	38.556	39.010	39.463	39.917	40.370	80
90	40.824	41.278	41.731	42.185	42.638	43.092	43.546	43.999	44.453	44.906	90
100	45.360	45.814	46.267	46.721	47.174	47.628	48.082	48.535	48.989	49.442	100

				Ki	lograms	to pound					
Kg	0	1	2	3	4	5	6	7	8	9	Kg
	lbs	lbs	lbs	lbs	lbs	lbs	lbs	lbs	lbs	lbs	
0	0.000	2.205	4.409	6.614	8.818	11.023	13.228	15.432	17.637	19.841	0
10	22.046	24.251	26.455	28.660	30.864	33.069	35.274	37.478	39.683	41.887	10
20	44.092	46.297	48.501	50.706	52.910	55.115	57.320	59.524	61.729	63.933	20
30	66.138	68.343	70.547	72.752	74.956	77.161	79.366	81.570	83.775	85.979	30
40	88.184	90.389	92.593	94.798	97.002	99.207	101.412	103.616	105.821	108.025	40
50	110.230	112.435	114.639	116.844	119.048	121.253	123.458	125.662	127.867	130.071	50
60	132.276	134.481	136.685	138.890	141.094	143.299	145.504	147.708	149.913	152.117	60
70	154.322	156.527	158.731	160.936	163.140	165.345	167.550	169.754	171.959	174.163	70
80	176.368	178.573	180.777	182.982	185.186	187.391	189.596	191.800	194.005	196.209	80
90	198.414	200.619	202.823	205.028	207.232	209.437	211.642	213.846	216.051	218.255	90
100	220.460	222.665	224.869	227.074	229.278	231.483	233.688	235.892	238.097	240.301	100

				Ki	lograms	to New to	n				
Kg	0	1	2	3	4	5	6	7	8	9	Kg
	N	N	N	N	N	N	N	N	N	N	
0	0.000	9.807	19.614	29.421	39.228	49.035	58.842	68.649	78.456	88.263	0
10	98.070	107.877	117.684	127.491	137.298	147.105	156.912	166.719	176.526	186.333	10
20	196.140	205.947	215.754	225.561	235.368	245.175	254.982	264.789	274.596	284.403	20
30	294.210	304.017	313.824	323.631	333.438	343.245	353.052	362.859	372.666	382.473	30
40	392.280	402.087	411.894	421.701	431.508	441.315	451.122	460.929	470.736	480.543	40
50	490.350	500.157	509.964	519.771	529.578	539.385	549.192	558.999	568.806	578.613	50
60	588.420	598.227	608.034	617.841	627.648	637.455	647.262	657.069	666.876	676.683	60
70	686.490	696.297	706.104	715.911	725.718	735.525	745.332	755.139	764.946	774.753	70
80	784.560	794.367	804.174	813.981	823.788	833.595	843.402	853.209	863.016	872.823	80
90	882.630	892.437	902.244	912.051	921.858	931.665	941.472	951.279	961.086	970.893	90
100	980.700	990.507	1000.314	1010.121	1019.928	1029.735	1039.542	1049.349	1059.156	1068.963	100

					Newton t	o Kilogra	ms				
Ν	0	1	2	3	4	5	6	7	8	9	N
	Kg	Kg	Kg	Kg	Kg	Kg	Kg	Kg	Kg	Kg	
0	0.000	1.020	2.039	3.059	4.079	5.099	6.118	7.138	8.158	9.177	0
10	10.197	11.217	12.236	13.256	14.276	15.296	16.315	17.335	18.355	19.374	10
20	20.394	21.414	22.433	23.453	24.473	25.493	26.512	27.532	28.552	29.571	20
30	30.591	31.611	32.630	33.650	34.670	35.690	36.709	37.729	38.749	39.768	30
40	40.788	41.808	42.827	43.847	44.867	45.887	46.906	47.926	48.946	49.965	40
50	50.985	52.005	53.024	54.044	55.064	56.084	57.103	58.123	59.143	60.162	50
60	61.182	62.202	63.221	64.241	65.261	66.281	67.300	68.320	69.340	70.359	60
70	71.379	72.399	73.418	74.438	75.458	76.478	77.497	78.517	79.537	80.556	70
80	81.576	82.596	83.615	84.635	85.655	86.675	87.694	88.714	89.734	90.753	80
90	91.773	92.793	93.812	94.832	95.852	96.872	97.891	98.911	99.931	100.950	90
100	101.970	102.990	104.009	105.029	106.049	107.069	108.088	109.108	110.128	111.147	100

	Pressure	Pou	ınds per s	quare inch	es to Kilo	grams per	square ce	entimeters			
b/in2(PSI)	0	1	2	3	4	5	6	7	8	9	lb/in2(PSI)
	Kg/cm2	Kg/cm2	Kg/cm2	Kg/cm2	Kg/cm2	Kg/cm2	Kg/cm2	Kg/cm2	Kg/cm2	Kg/cm2	
0	0.0000	0.0703	0.1406	0.2109	0.2812	0.3516	0.4219	0.4922	0.5625	0.6328	0
10	0.7031	0.7734	0.8437	0.9140	0.9843	1.0547	1.1250	1.1953	1.2656	1.3359	10
20	1.4062	1.4765	1.5468	1.6171	1.6874	1.7578	1.8281	1.8984	1.9687	2.0390	20
30	2.1093	2.1796	2.2499	2.3202	2.3905	2.4609	2.5312	2.6015	2.6718	2.7421	30
40	2.8124	2.8827	2.9530	3.0233	3.0936	3.1640	3.2343	3.3046	3.3749	3.4452	40
50	3.5155	3.5858	3.6561	3.7264	3.7967	3.8671	3.9374	4.0077	4.0780	4.1483	50
60	4.2186	4.2889	4.3592	4.4295	4.4998	4.5702	4.6405	4.7108	4.7811	4.8514	60
70	4.9217	4.9920	5.0623	5.1326	5.2029	5.2733	5.3436	5.4139	5.4842	5.5545	70
80	5.6248	5.6951	5.7654	5.8357	5.9060	5.9764	6.0467	6.1170	6.1873	6.2576	80
90	6.3279	6.3982	6.4685	6.5388	6.6091	6.6795	6.7498	6.8201	6.8904	6.9607	90
100	7.0310	7.1013	7.1716	7.2419	7.3122	7.3826	7.4529	7.5232	7.5935	7.6638	100

			Kilo	grams per	square c	entimeters	to Pounds	s per squa	are inches		
Kg/cm2	0	1	2	3	4	5	6	7	8	9	Kg/cm2
	lb/in2(psi)										
0	0.00	14.22	28.45	42.67	56.89	71.12	85.34	99.56	113.78	128.01	C
10	142.23	156.45	170.68	184.90	199.12	213.35	227.57	241.79	256.01	270.24	10
20	284.46	298.68	312.91	327.13	341.35	355.58	369.80	384.02	398.24	412.47	20
30	426.69	440.91	455.14	469.36	483.58	497.81	512.03	526.25	540.47	554.70	30
40	568.92	583.14	597.37	611.59	625.81	640.04	654.26	668.48	682.70	696.93	40
50	711.15	725.37	739.60	753.82	768.04	782.27	796.49	810.71	824.93	839.16	50
60	853.38	867.60	881.83	896.05	910.27	924.50	938.72	952.94	967.16	981.39	60
70	995.61	1009.83	1024.06	1038.28	1052.50	1066.73	1080.95	1095.17	1109.39	1123.62	70
80	1137.84	1152.06	1166.29	1180.51	1194.73	1208.96	1223.18	1237.40	1251.62	1265.85	80
90	1280.07	1294.29	1308.52	1322.74	1336.96	1351.19	1365.41	1379.63	1393.85	1408.08	90
100	1422.30	1436.52	1450.75	1464.97	1479.19	1493.42	1507.64	1521.86	1536.08	1550.31	100

		Kilograms per square centimeters to Kilo pascal												
Kg/cm2	0	1	2	3	4	5	6	7	8	9	Kg/cm2			
	Кра	Kpa	Kpa	Kpa	Kpa	Kpa	Kpa	Kpa	Kpa	Kpa	-			
0	0.0	98.1	196.1	294.2	392.3	490.4	588.4	686.5	784.6	882.6	0			
10	980.7	1078.8	1176.8	1274.9	1373.0	1471.1	1569.1	1667.2	1765.3	1863.3	10			
20	1961.4	2059.5	2157.5	2255.6	2353.7	2451.8	2549.8	2647.9	2746.0	2844.0	20			
30	2942.1	3040.2	3138.2	3236.3	3334.4	3432.5	3530.5	3628.6	3726.7	3824.7	30			
40	3922.8	4020.9	4118.9	4217.0	4315.1	4413.2	4511.2	4609.3	4707.4	4805.4	40			
50	4903.5	5001.6	5099.6	5197.7	5295.8	5393.9	5491.9	5590.0	5688.1	5786.1	50			
60	5884.2	5982.3	6080.3	6178.4	6276.5	6374.6	6472.6	6570.7	6668.8	6766.8	60			
70	6864.9	6963.0	7061.0	7159.1	7257.2	7355.3	7453.3	7551.4	7649.5	7747.5	70			
80	7845.6	7943.7	8041.7	8139.8	8237.9	8336.0	8434.0	8532.1	8630.2	8728.2	80			
90	8826.3	8924.4	9022.4	9120.5	9218.6	9316.7	9414.7	9512.8	9610.9	9708.9	90			
100	9807.0	9905.1	10003.1	10101.2	10199.3	10297.4	10395.4	10493.5	10591.6	10689.6	100			

				Kilo p	pascal to	kilogram p	<u>er square</u>	centimete	rs		
Kpa	0	100	200	300	400	500	600	700	800	900	Kpa
	Kg/cm2	Kg/cm2	Kg/cm2	Kg/cm2	Kg/cm2	Kg/cm2	Kg/cm2	Kg/cm2	Kg/cm2	Kg/cm2	
0	0.000	1.020	2.039	3.059	4.079	5.099	6.118	7.138	8.158	9.177	C
1000	10.197	11.217	12.236	13.256	14.276	15.296	16.315	17.335	18.355	19.374	1000
2000	20.394	21.414	22.433	23.453	24.473	25.493	26.512	27.532	28.552	29.571	2000
3000	30.591	31.611	32.630	33.650	34.670	35.690	36.709	37.729	38.749	39.768	3000
4000	40.788	41.808	42.827	43.847	44.867	45.887	46.906	47.926	48.946	49.965	4000
5000	50.985	52.005	53.024	54.044	55.064	56.084	57.103	58.123	59.143	60.162	5000
6000	61.182	62.202	63.221	64.241	65.261	66.281	67.300	68.320	69.340	70.359	6000
7000	71.379	72.399	73.418	74.438	75.458	76.478	77.497	78.517	79.537	80.556	7000
8000	81.576	82.596	83.615	84.635	85.655	86.675	87.694	88.714	89.734	90.753	8000
9000	91.773	92.793	93.812	94.832	95.852	96.872	97.891	98.911	99.931	100.950	9000
10000	101.970	102.990	104.009	105.029	106.049	107.069	108.088	109.108	110.128	111.147	10000

Torque Foot pounds to Kilogram meters 3 4 5 8 9 ft lbs 6 0 Kg-m 0.828 0.138 0.276 0.414 0.552 0.690 0.966 1.104 1.242 1.380 1.518 1.656 1.794 1.932 2.070 2.208 2.346 2.484 2.622 10 2.760 20 2.898 3.450 3.588 3.726 20 3.174 3.312 3.036 3.864 4.002 30 4.554 30 4.140 4.278 4.830 5.106 5.244 5.382 4.416 4.692 4.968 5.520 5.934 6.210 40 5.658 5.796 6.072 6.348 6.486 6.624 6.762 40 7.176 50 6.900 7.314 7.452 7.590 8.004 8.142 50 7.038 7.728 7.866 60 8.280 8.418 8.556 8.694 8.832 8.970 9.108 9.246 9.384 9.522 60 70 9.660 9.798 9.936 10.074 10.212 10.350 10.488 10.626 10.764 10.902 70 80 11.592 11.730 12.282 80 11.040 11.178 11.316 11.454 11.868 12.006 12.144 90 90 12.420 12.558 12.834 12.972 13.110 13.248 13.524 13.662 12.696 13.386 13.938 100 13.800 14.214 14.352 14.490 15.042 100 14.076 14.628 14.766 14.904

					Kilogram n	neters to F	oot pounds	1			
	0	1	2	3	4	5	6	7	8	9	Kg-m
	ft-lbs	ft-lbs	ft-lbs	ft-lbs	ft-lbs	ft-lbs	ft-lbs	ft-lbs	ft-lbs	ft-lbs	
		7.230	14.470	21.690	28.930	36.170	43.400	50.630	57.870	65.100	
10	72.300	79.530	86.770	93.990	101.230	108.470	115.700	122.930	130.170	137.400	10
20	144.600	151.830	159.070	166.290	173.530	180.770	188.000	195.230	202.470	209.700	20
30	216.900	224.130	231.370	238.590	245.830	253.070	260.300	267.530	274.770	282.000	30
40	289.200	296.430	303.670	310.890	318.130	325.370	332.600	339.830	347.070	354.300	40
50	361.500	368.730	375.970	383.190	390.430	397.670	404.900	412.130	419.370	426.600	50
60	433.800	441.030	448.270	455.490	462.730	469.970	477.200	484.430	491.670	498.900	60
70	506.100	513.330	520.570	527.790	535.030	542.270	549.500	556.730	563.970	571.200	70
80	578.400	585.630	592.870	600.090	607.330	614.570	621.800	629.030	636.270	643.500	80
90	650.700	657.930	665.170	672.390	679.630	686.870	694.100	701.330	708.570	715.800	90
100	723.000	730.230	737.470	744.690	751.930	759.170	766.400	773.630	780.870	788.100	100

Kilogram meters to newtonmeters											
	0	1	2	3	4	5	6	7	8	9	Kg-m
	N-m	N-m	N-m	N-m	N-m	N-m	N-m	N-m	N-m	N-m	
		9.810	19.610	29.420	39.230	49.030	58.810	68.650	78.450	88.260	
10	98.100	107.910	117.710	127.520	137.330	147.130	156.910	166.750	176.550	186.360	10
20	196.200	206.010	215.810	225.620	235.430	245.230	255.010	264.850	274.650	284.460	20
30	294.300	304.110	313.910	323.720	333.530	343.330	353.110	362.950	372.750	382.560	30
40	392.400	402.210	412.010	421.820	431.630	441.430	451.210	461.050	470.850	480.660	40
50	490.500	500.310	510.110	519.920	529.730	539.530	549.310	559.150	568.950	578.760	50
60	588.600	598.410	608.210	618.020	627.830	637.630	647.410	657.250	667.050	676.860	60
70	686.700	696.510	706.310	716.120	725.930	735.730	745.510	755.350	765.150	774.960	70
80	784.800	794.610	804.410	814.220	824.030	833.830	843.610	853.450	863.250	873.060	80
90	882.900	892.710	902.510	912.320	922.130	931.930	941.710	951.550	961.350	971.160	90
100	981.000	990.810	1000.610	1010.420	1020.230	1030.030	1039.810	1049.650	1059.450	1069.260	100

	Newtonmeters to Kilogrammeters										
	0	10	20	30	40	50	60	70	80	90	N-m
	Kg-m	Kg-m	Kg-m	Kg-m	Kg-m	Kg-m	Kg-m	Kg-m	Kg-m	Kg-m	
0	0.000	1.020	2.040	3.060	4.080	5.100	6.120	7.140	8.160	9.180	0
100	10.200	11.220	12.240	13.260	14.280	15.300	16.320	17.340	18.360	19.380	100
200	20.400	21.420	22.440	23.460	24.480	25.500	26.520	27.540	28.560	29.580	200
300	30.600	31.620	32.640	33.660	34.680	35.700	36.720	37.740	38.760	39.780	300
400	40.800	41.820	42.840	43.860	44.880	45.900	46.920	47.940	48.960	49.980	400
500	51.000	52.020	53.040	54.060	55.080	56.100	57.120	58.140	59.160	60.180	500
600	61.200	62.220	63.240	64.260	65.280	66.300	67.320	68.340	69.360	70.380	600
700	71.400	72.420	73.440	74.460	75.480	76.500	77.520	78.540	79.560	80.580	700
800	81.600	82.620	83.640	84.660	85.680	86.700	87.720	88.740	89.760	90.780	800
900	91.800	92.820	93.840	94.860	95.880	96.900	97.920	98.940	99.960	100.980	900
1000	102 000	103 020	104 040	105 060	106 080	107 100	108 120	109 140	110 160	111 180	1000

Temperature	Fahrer	nheit to Centigrade				
°F	°C	°F	°C			
-20	-28.9	95	35.0			
-15	-26.1	100	37.8			
-10	-23.3	105	40.6			
-5	-20.6	110	43.3			
0	-17.8	115	46.1			
1	-17.2	120	46.1 48.9			
2	-16.7	125	51.7			
3	-16.1	125 130	54.4			
4	-15.6	135	57.2			
5	-15.0	140	60.0			
10	-12.2	145	62.8			
15	-9.4	150	65.6			
20	-6.7	155	68.3			
25	-3.9	160	71.1			
30	-1.1	165	73.9			
35	1.7	170	76.7			
40	4.4	175	79.4			
45	7.2	180	82.2 85.0			
50	10.0	185	85.0			
55	12.8	190	87.8			
60	15.6	195	90.6			
65	18.3	200	93.3			
70	21.1	205	96.1			
75	23.9	210	98.9			
80	26.7	212	100.0			
85	29.4					
90	32.2	_				

Centigrade to Fahrenheit							
°C	°F	°C	°F				
-30	-22.0	36	96.8				
-28	-18.4	38	100.4				
-26	-14.8	40	104.0				
-24	-11.2	42	107.6				
-22	-7.6	44	111.2				
-20	-4.0	46	114.8				
-18	-0.4	48	118.4				
-16	3.2	50	122.0				
-14	6.8	52	125.6				
-12	10.4	54	129.2				
-10	14.0	56	132.8				
-8	17.6	58	136.4				
-6	21.2	60	140.0				
-4	24.8	62	143.6				
-2	28.4	64	147.2				
0	32.0	66	150.8				
2	35.6	68	154.4				
4	39.2	70	158.0				
6	42.8	72	161.6				
8	46.4	74	165.2				
10	50.0	76	168.8				
12	53.6	78	172.4				
14	57.2	80	176.0				
16	60.8	82	179.6				
18	64.4	84	183.2				
20	68.0	86	186.8				
22	71.6	88	190.4				
24	75.2	90	194.0				
26	78.8	92	197.6				
28	82.4	94	201.2				
30	86.0	96	204.8				
32	89.6	98	208.4				

93.2

T475HST Workshop Manual for Tractors Code No. Printed on January. 2021 1st Edition